These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 8368359)

  • 1. Time-dependent rheological behavior of blood at low shear in narrow vertical tubes.
    Alonso C; Pries AR; Gaehtgens P
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H553-61. PubMed ID: 8368359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient rheological behavior of blood in low-shear tube flow: velocity profiles and effective viscosity.
    Alonso C; Pries AR; Kiesslich O; Lerche D; Gaehtgens P
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H25-32. PubMed ID: 7840268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent rheological behaviour of blood flow at low shear in narrow horizontal tubes.
    Alonso C; Pries AR; Gaehtgens P
    Biorheology; 1989; 26(2):229-46. PubMed ID: 2605330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of shear rate variation on apparent viscosity of human blood in tubes of 29 to 94 microns diameter.
    Reinke W; Johnson PC; Gaehtgens P
    Circ Res; 1986 Aug; 59(2):124-32. PubMed ID: 3742742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tube flow of human blood at near zero shear.
    Gaehtgens P
    Biorheology; 1987; 24(4):367-76. PubMed ID: 3663895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The missing negative effect of red cell aggregation upon blood flow in small capillaries at low shear forces.
    Braasch D
    Biorheology Suppl; 1984; 1():227-30. PubMed ID: 6434001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-dependent rheological properties of blood in capillaries.
    Secomb TW
    Microvasc Res; 1987 Jul; 34(1):46-58. PubMed ID: 3657604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between shear dependent blood viscosity, electrical resistance and calculated width of the marginal layer in blood perfused capillary tubes.
    Braasch D; Witte B
    Int J Microcirc Clin Exp; 1987; 5(4):347-57. PubMed ID: 3557820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
    Lanotte L; Mauer J; Mendez S; Fedosov DA; Fromental JM; Claveria V; Nicoud F; Gompper G; Abkarian M
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13289-13294. PubMed ID: 27834220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood rheology and physiology of microcirculation.
    Schmid-Schönbein H
    Ric Clin Lab; 1981; 11 Suppl 1():13-33. PubMed ID: 7188106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of aggregation on the flow properties of red blood cell suspensions in narrow vertical tubes.
    Murata T; Secomb TW
    Biorheology; 1989; 26(2):247-59. PubMed ID: 2605331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action of hydroxyethyl starch on the flow properties of human erythrocyte suspensions.
    Corry WD; Jackson LJ; Seaman GV
    Biorheology; 1983; 20(5):705-17. PubMed ID: 6203575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow behavior of neonatal and adult erythrocytes in narrow capillaries.
    Stadler A; Linderkamp O
    Microvasc Res; 1989 May; 37(3):267-79. PubMed ID: 2733599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of red cell aggregation by low shear rate viscometry in whole blood with elevated plasma viscosity.
    Janzen J; Elliott TG; Carter CJ; Brooks DE
    Biorheology; 2000; 37(3):225-37. PubMed ID: 11026942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power Doppler ultrasound evaluation of the shear rate and shear stress dependences of red blood cell aggregation.
    Cloutier G; Qin Z; Durand LG; Teh BG
    IEEE Trans Biomed Eng; 1996 May; 43(5):441-50. PubMed ID: 8849457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.