These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8368381)

  • 41. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 2003 Jan; 89(1):199-211. PubMed ID: 12522172
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antagonistic interaction of laryngeal and central chemoreceptor respiratory reflexes.
    Van Vliet BN; Uenishi M
    J Appl Physiol (1985); 1992 Feb; 72(2):643-9. PubMed ID: 1559943
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synaptic inhibition of cat phrenic motoneurons by internal intercostal nerve stimulation.
    Bellingham MC
    J Neurophysiol; 1999 Sep; 82(3):1224-32. PubMed ID: 10482742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intracellular records of the effects of primary afferent input in lumbar spinoreticular tract neurons in the cat.
    Sahara Y; Xie YK; Bennett GJ
    J Neurophysiol; 1990 Dec; 64(6):1791-800. PubMed ID: 2074464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Reflex action of extralingual mechanosensory afferents in the solitary tract nucleus].
    Villa A; Gilberti G; Rapuzzi G
    Boll Soc Ital Biol Sper; 1988 Apr; 64(4):369-75. PubMed ID: 3190898
    [No Abstract]   [Full Text] [Related]  

  • 46. NMDA receptors contribute to primary visceral afferent transmission in the nucleus of the solitary tract.
    Aylwin ML; Horowitz JM; Bonham AC
    J Neurophysiol; 1997 May; 77(5):2539-48. PubMed ID: 9163375
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [An automated electrophysiological device for studying the neuronal reactions of the cat medulla oblongata to stimulation of gastric mechanoreceptors].
    Panteleev SS
    Fiziol Zh SSSR Im I M Sechenova; 1990 Jan; 76(1):135-9. PubMed ID: 2159906
    [No Abstract]   [Full Text] [Related]  

  • 48. Responses of medullary raphe neurons to electrical and chemical activation of vagal afferent nerve fibers.
    Evans AR; Blair RW
    J Neurophysiol; 1993 Nov; 70(5):1950-61. PubMed ID: 8294964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius.
    Andresen MC; Yang MY
    Am J Physiol; 1990 Oct; 259(4 Pt 2):H1307-11. PubMed ID: 1977326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapidly adapting pulmonary receptor afferents: I. Arborization in the nucleus of the tractus solitarius.
    Kalia M; Richter D
    J Comp Neurol; 1988 Aug; 274(4):560-73. PubMed ID: 2464624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuronal activation in the medulla oblongata during selective elicitation of the laryngeal adductor response.
    Ambalavanar R; Tanaka Y; Selbie WS; Ludlow CL
    J Neurophysiol; 2004 Nov; 92(5):2920-32. PubMed ID: 15212423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expiratory-modulated laryngeal motoneurons exhibit a hyperpolarization preceding depolarization during superior laryngeal nerve stimulation in the in vivo adult rat.
    Bautista TG; Sun QJ; Pilowsky PM
    Brain Res; 2012 Mar; 1445():52-61. PubMed ID: 22326041
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expiration-related neurons in the region of the retrofacial nucleus: vagal and laryngeal inhibitory influences.
    Pantaleo T; Corda M
    Brain Res; 1985 Dec; 359(1-2):343-6. PubMed ID: 3935274
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Modification, in the solitary fasciculus nucleus, of the excitability of vagal or laryngeal nerve endings of known origin. Unit study].
    Barillot JC; Mei N
    J Physiol (Paris); 1968; 60 Suppl 2():395-6. PubMed ID: 5734934
    [No Abstract]   [Full Text] [Related]  

  • 55. Frequency dependence of synaptic transmission in nucleus of the solitary tract in vitro.
    Miles R
    J Neurophysiol; 1986 May; 55(5):1076-90. PubMed ID: 3012009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus.
    Qu L; McQueeney AJ; Barnes KL
    J Neurophysiol; 1996 Jun; 75(6):2220-8. PubMed ID: 8793736
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inputs to the swallowing medullary neurons from the peripheral afferent fibers and the swallowing cortical area.
    Jean A; Car A
    Brain Res; 1979 Dec; 178(2-3):567-72. PubMed ID: 509218
    [No Abstract]   [Full Text] [Related]  

  • 58. Medullary swallowing-related neurons in the anesthetized cat.
    Umezaki T; Matsuse T; Shin T
    Neuroreport; 1998 Jun; 9(8):1793-8. PubMed ID: 9665602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Primary afferents evoke excitatory amino acid receptor-mediated EPSPs that are modulated by presynaptic GABAB receptors in lamprey.
    Christenson J; Grillner S
    J Neurophysiol; 1991 Dec; 66(6):2141-9. PubMed ID: 1687474
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatio-temporal patterns of pre- and postsynaptic inhibition induced by primary afferent activation in the trigeminal sensory nucleus in cats.
    Ishimine S; Hikosaka O; Nakamura Y
    Exp Brain Res; 1980; 40(2):154-63. PubMed ID: 7428872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.