These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 836847)

  • 41. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis.
    Zeng C; Aleshin AE; Hardie JB; Harrison RW; Fromm HJ
    Biochemistry; 1996 Oct; 35(40):13157-64. PubMed ID: 8855953
    [TBL] [Abstract][Full Text] [Related]  

  • 42. pH kinetic studies of bovine brain hexokinase.
    Solheim LP; Fromm HJ
    Biochemistry; 1980 Dec; 19(26):6074-80. PubMed ID: 7470451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme.
    Sebastian S; Wilson JE; Mulichak A; Garavito RM
    Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ascaris suum hexokinase: purification and possible function in compartmentation of glucose 6-phosphate in muscle.
    Supowit SC; Harris BG
    Biochim Biophys Acta; 1976 Jan; 422(1):48-59. PubMed ID: 1247596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural and functional implications of the hexokinase-nickel interaction.
    Romero CS; Olmo R; Teijón C; Blanco MD; Teijón JM; Romero A
    J Inorg Biochem; 2005 Dec; 99(12):2395-402. PubMed ID: 16256202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring the hexokinase glucose binding site through correlation analysis and molecular modeling of glucosamine inhibitors.
    Coats EA; Skau KA; Caperelli CA; Solomacha D
    J Enzyme Inhib; 1992; 6(4):271-82. PubMed ID: 1284964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.
    Bachelard HS
    Biochem J; 1971 Nov; 125(1):249-54. PubMed ID: 5158910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comments on the kinetics and mechanism of yeast hexokinase action. Is the binding sequence of substrates to the enzyme ordered or random?
    Fromm HJ
    Eur J Biochem; 1969 Jan; 7(3):385-92. PubMed ID: 5791583
    [No Abstract]   [Full Text] [Related]  

  • 49. The roles of glycine residues in the ATP binding site of human brain hexokinase.
    Zeng C; Aleshin AE; Chen G; Honzatko RB; Fromm HJ
    J Biol Chem; 1998 Jan; 273(2):700-4. PubMed ID: 9422720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proton-dependent inhibition of yeast and brain hexokinases by aluminum in ATP preparations.
    Womack FC; Colowick SP
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):5080-4. PubMed ID: 116225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity.
    Bessell EM; Foster AB; Westwood JH
    Biochem J; 1972 Jun; 128(2):199-204. PubMed ID: 4563639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glucose binding isotope effects in the ternary complex of brain hexokinase demonstrate partial relief of ground-state destabilization.
    Lewis BE; Schramm VL
    J Am Chem Soc; 2003 Apr; 125(16):4672-3. PubMed ID: 12696861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An active site-directed, irreversible inactivation of yeast hexokinase by (R,S)2,3-epoxypropyl beta-D-glucopyranoside.
    Bessell EM; Thomas P; Westwood JH
    Chem Biol Interact; 1973 Nov; 7(5):327-41. PubMed ID: 4773180
    [No Abstract]   [Full Text] [Related]  

  • 54. [Inhibition of luciferase from the firefly Luciola mingrelica by ATP analogs].
    Filippova NIu; Ugarova NN
    Biokhimiia; 1982 Aug; 47(8):1342-8. PubMed ID: 7126700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Changes in the properties of hexokinase from hyaloplasm on binding with mitochondria].
    Shcherbatykh LN; Goncharova NIu; Aleksakhina NV
    Biokhimiia; 1977 Aug; 42(8):1408-18. PubMed ID: 911936
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of structural modifications of ATP on the yeast-hexokinase reaction.
    Hohnadel DC; Cooper C
    Eur J Biochem; 1972 Nov; 31(1):180-5. PubMed ID: 4565520
    [No Abstract]   [Full Text] [Related]  

  • 57. [Interactions of yeast hexokinase with ATP and AMP 4-(N-2-chloroethyl-N-methylamino)benzylamidates].
    Buneva VN; Knorre DG; Pacha IO
    Biokhimiia; 1980 Jun; 45(6):1004-9. PubMed ID: 7011427
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fluorescence study of thermally induced conformational changes in yeast hexokinase.
    Wasylewski Z; Criscimagna NL; Horowitz PM
    Biochim Biophys Acta; 1985 Oct; 831(2):201-6. PubMed ID: 3899179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multisubstrate analogs for deoxynucleoside kinases. Triphosphate end products and synthetic bisubstrate analogs exhibit identical modes of binding and are useful probes for distinguishing kinetic mechanisms.
    Ikeda S; Chakravarty R; Ives DH
    J Biol Chem; 1986 Dec; 261(34):15836-43. PubMed ID: 3023328
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of isomers of monoamminechromium-ATP and their use in mapping enzyme active sites.
    Rawlings J; Speckhard DC; Cleland WW
    Biochemistry; 1993 Oct; 32(41):11204-10. PubMed ID: 8218184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.