BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8368516)

  • 21. Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability.
    Minond D; Lauer-Fields JL; Nagase H; Fields GB
    Biochemistry; 2004 Sep; 43(36):11474-81. PubMed ID: 15350133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of peptide substrates of fibroblast collagenase with divalent cations: Ca2+ binding by substrate as a suggested recognition signal for collagenase action.
    Upadhye S; Ananthanarayanan VS
    Biochem Biophys Res Commun; 1995 Oct; 215(2):474-82. PubMed ID: 7487980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow cytometric analysis of gelatinase B (MMP-9) activity using immobilized fluorescent substrate on microspheres.
    St-Pierre Y; Desrosiers M; Tremblay P; Estève PO; Opdenakker G
    Cytometry; 1996 Dec; 25(4):374-80. PubMed ID: 8946145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis.
    Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR
    Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A continuous fluorescence assay of renin activity.
    Wang GT; Chung CC; Holzman TF; Krafft GA
    Anal Biochem; 1993 May; 210(2):351-9. PubMed ID: 8512070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent, internally quenched, peptides for exploring the pH-dependent substrate specificity of cathepsin B.
    Ruzza P; Quintieri L; Osler A; Calderan A; Biondi B; Floreani M; Guiotto A; Borin G
    J Pept Sci; 2006 Jul; 12(7):455-61. PubMed ID: 16485313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of highly selective inhibitors of collagenase-1 from combinatorial libraries of diketopiperazines.
    Szardenings AK; Antonenko V; Campbell DA; DeFrancisco N; Ida S; Shi L; Sharkov N; Tien D; Wang Y; Navre M
    J Med Chem; 1999 Apr; 42(8):1348-57. PubMed ID: 10212120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library.
    Deng SJ; Bickett DM; Mitchell JL; Lambert MH; Blackburn RK; Carter HL; Neugebauer J; Pahel G; Weiner MP; Moss ML
    J Biol Chem; 2000 Oct; 275(40):31422-7. PubMed ID: 10906330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an assay suitable for high-throughput screening to measure matrix metalloprotease activity.
    Peppard J; Pham Q; Clark A; Farley D; Sakane Y; Graves R; George J; Norey C
    Assay Drug Dev Technol; 2003 Jun; 1(3):425-33. PubMed ID: 15090179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of a fluorogenic interleukin-1 beta converting enzyme substrate based on resonance energy transfer.
    Pennington MW; Thornberry NA
    Pept Res; 1994; 7(2):72-6. PubMed ID: 8012123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids.
    Lauer-Fields JL; Kele P; Sui G; Nagase H; Leblanc RM; Fields GB
    Anal Biochem; 2003 Oct; 321(1):105-15. PubMed ID: 12963061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide.
    Stack MS; Gray RD
    J Biol Chem; 1989 Mar; 264(8):4277-81. PubMed ID: 2538433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuously recording fluorescent assays optimized for five human matrix metalloproteinases.
    Netzel-Arnett S; Mallya SK; Nagase H; Birkedal-Hansen H; Van Wart HE
    Anal Biochem; 1991 May; 195(1):86-92. PubMed ID: 1888020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraction of type IV collagenase/gelatinase from plasma membranes of human pancreatic cancer cells.
    Zucker S; Moll UM; Lysik RM; DiMassimo EI; Schwedes JW; Liotta LA
    Matrix Suppl; 1992; 1():411. PubMed ID: 1480078
    [No Abstract]   [Full Text] [Related]  

  • 35. Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates.
    Grant SK; Sklar JG; Cummings RT
    J Biomol Screen; 2002 Dec; 7(6):531-40. PubMed ID: 14599351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the conserved histidine and aspartic acid residues in activity and stabilization of human gelatinase B: an example of matrix metalloproteinases.
    Pourmotabbed T; Aelion JA; Tyrrell D; Hasty KA; Bu CH; Mainardi CL
    J Protein Chem; 1995 Oct; 14(7):527-35. PubMed ID: 8561849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-line chromatographic screening of matrix metalloproteinase inhibitors using immobilized MMP-9 enzyme reactor.
    Ma X; Chan EC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jul; 878(21):1777-83. PubMed ID: 20537964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunopurification and characterization of a collagenase/gelatinase domain issued from basement membrane fibronectin.
    Boudjennah L; Dalet-Fumeron V; Ylätupa S; Pagano M
    FEBS Lett; 1996 Aug; 391(1-2):52-6. PubMed ID: 8706929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity.
    Knäuper V; Patterson ML; Gomis-Rüth FX; Smith B; Lyons A; Docherty AJ; Murphy G
    Eur J Biochem; 2001 Mar; 268(6):1888-96. PubMed ID: 11248710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thioester hydrolysis by matrix metalloproteinases.
    Stein RL; Izquierdo-Martin M
    Arch Biochem Biophys; 1994 Jan; 308(1):274-7. PubMed ID: 8311464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.