These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8368534)

  • 1. Improved data-processing method for atomic absorption spectroscopy with electrothermal atomization.
    Hsiech C; Pardue HL
    Anal Chem; 1993 Jul; 65(14):1809-13. PubMed ID: 8368534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of toxic elements in plastics from waste electrical and electronic equipment by slurry sampling electrothermal atomic absorption spectrometry.
    Santos MC; Nóbrega JA; Baccan N; Cadore S
    Talanta; 2010 Jun; 81(4-5):1781-7. PubMed ID: 20441973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrothermal atomic absorption spectrometry of trace metals in biological fluids.
    Sunderman FW
    Ann Clin Lab Sci; 1975; 5(6):421-34. PubMed ID: 1200617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovations in atomic absorption spectrophotometry with electrothermal atomization for determining lead in foods.
    Rains TC; Rush TA; Butler TA
    J Assoc Off Anal Chem; 1982 Jul; 65(4):994-8. PubMed ID: 7118809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of total chromium in whole blood, blood components, bone, and urine by fast furnace program electrothermal atomization AAS and using neither analyte isoformation nor background correction.
    Granadillo VA; Parra de Machado L; Romero RA
    Anal Chem; 1994 Nov; 66(21):3624-31. PubMed ID: 7802253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct determination of Cr and Cu in urine samples by electrothermal atomic absorption spectrometry using ruthenium as permanent modifier (R1).
    Lelis KL; Magalhães CG; Rocha CA; of Silva JB
    Anal Bioanal Chem; 2002 Dec; 374(7-8):1301-5. PubMed ID: 12474101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.
    Silva AS; Brandao GC; Matos GD; Ferreira SL
    Talanta; 2015 Nov; 144():39-43. PubMed ID: 26452789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers.
    Dessuy MB; Vale MG; Souza AS; Ferreira SL; Welz B; Katskov DA
    Talanta; 2008 Feb; 74(5):1321-9. PubMed ID: 18371785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The design and evaluation of horizontal pipe mini-flame atomization and ionization synchronous detector in GC/AAS].
    Yan Z; Sun JM; Qiao YQ; Sun HW
    Se Pu; 2001 Jan; 19(1):32-6. PubMed ID: 12541842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of tungsten coil electrothermal vaporization and thermospray sample introduction methods for flame furnace atomic absorption spectrometry.
    Wu P; Zhang Y; Liu R; Lv Y; Hou X
    Talanta; 2009 Mar; 77(5):1778-82. PubMed ID: 19159798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Atomization efficiency of graphite furnace in atomic absorption spectrometry].
    Zhong MH; Zheng YS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Feb; 22(1):135-8. PubMed ID: 12940051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of beryllium by electrothermal atomic absorption spectrometry using tungsten surfaces and zirconium modifier.
    Castro MA; Robles LC; Lumbreras JM; de Celis B; Aller AJ; Littlejohn D
    Anal Chim Acta; 2009 Mar; 636(2):158-62. PubMed ID: 19264163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Direct analysis of trace elements in tobacco using electrothermal vaporization ICP-AES].
    Chen SZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):358-60. PubMed ID: 12961895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of aluminium in body fluids by solvent extraction and atomic absorption spectroscopy with electrothermal atomization.
    Buratti M; Caravelli G; Calzaferri G; Colombi A
    Clin Chim Acta; 1984 Aug; 141(2-3):253-9. PubMed ID: 6488558
    [No Abstract]   [Full Text] [Related]  

  • 15. Investigation of trace element content of cheese.
    Gabrielli Favretto L
    Food Addit Contam; 1990; 7(3):425-32. PubMed ID: 2379656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Recent developments of the atomization kinetics in electrothermal atomic absorption spectrometry].
    Yan XP; Jiang Y; Ni ZM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):649-54. PubMed ID: 12945321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuum-source atomic absorption spectroscopy with an echelle spectrometer adapted to a charge injection device.
    Hsiech C; Petrovic SC; Pardue HL
    Anal Chem; 1990 Sep; 62(18):1983-8. PubMed ID: 2240578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium determination in pharmaceutical grade barium sulfate by solid sampling electrothermal atomic absorption spectrometry with Zeeman-effect background correction.
    Bolzan RC; Rodrigues LF; Mattos JC; Dressler VL; Flores EM
    Talanta; 2007 Nov; 74(1):119-24. PubMed ID: 18371620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrothermal atomization of calcium and strontium in a molybdenum micro-tube.
    Suzuki M; Ohta K
    Talanta; 1981 Mar; 28(3):177-81. PubMed ID: 18962887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.
    Yamamoto Y; Shirasaki T; Yonetani A; Imai S
    Anal Sci; 2015; 31(5):357-64. PubMed ID: 25958863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.