These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 8369286)

  • 1. Luminescence studies with trp repressor and its single-tryptophan mutants.
    Eftink MR; Ramsay GD; Burns L; Maki AH; Mann CJ; Matthews CR; Ghiron CA
    Biochemistry; 1993 Sep; 32(35):9189-98. PubMed ID: 8369286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence quenching studies of Trp repressor using single-tryptophan mutants.
    Blicharska Z; Wasylewski Z
    J Protein Chem; 1995 Nov; 14(8):739-46. PubMed ID: 8747435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants.
    Royer CA; Mann CJ; Matthews CR
    Protein Sci; 1993 Nov; 2(11):1844-52. PubMed ID: 8268795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-tryptophan mutants of monomeric tryptophan repressor: optical spectroscopy reveals nonnative structure in a model for an early folding intermediate.
    Shao X; Matthews CR
    Biochemistry; 1998 May; 37(21):7850-8. PubMed ID: 9601046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluorescence study of Tn10-encoded tet repressor.
    Wasylewski Z; Kaszycki P; Drwiega M
    J Protein Chem; 1996 Jan; 15(1):45-58. PubMed ID: 8838589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the two tryptophan residues of the lactose repressor from Escherichia coli by phosphorescence and optical detection of magnetic resonance.
    Burns LE; Maki AH; Spotts R; Matthews KS
    Biochemistry; 1993 Nov; 32(47):12821-9. PubMed ID: 8251503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan replacements in the trp aporepressor from Escherichia coli: probing the equilibrium and kinetic folding models.
    Mann CJ; Royer CA; Matthews CR
    Protein Sci; 1993 Nov; 2(11):1853-61. PubMed ID: 8268796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering proteins without primary sequence tryptophan residues: mutant trp repressors with aliphatic substitutions for tryptophan side chains.
    Chapman D; Hochstrasser R; Millar D; Youderian P
    Gene; 1995 Sep; 163(1):1-11. PubMed ID: 7557456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of complexes of a tryptophan-free mutant of E. coli trp aporepressor with tryptophan analogues using optically detected magnetic resonance (ODMR).
    Ozarowski A; Wu JQ; Maki AH
    FEBS Lett; 1998 Jan; 422(1):52-6. PubMed ID: 9475168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the tryptophan binding site of Escherichia coli tryptophan holorepressor by phosphorescence and optical detection of magnetic resonance of a tryptophan-free mutant.
    Li Z; Maki AH; Eftink MR; Mann CJ; Matthews CR
    Biochemistry; 1995 Oct; 34(39):12866-70. PubMed ID: 7548042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants.
    Ozarowski A; Barry JK; Matthews KS; Maki AH
    Biochemistry; 1999 May; 38(21):6715-22. PubMed ID: 10346891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants.
    Royer CA
    Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the tryptophan residues of Escherechia coli alkaline phosphatase by phosphorescence and optically detected magnetic resonance spectroscopy.
    Ghosh S; Misra A; Ozarowski A; Stuart C; Maki AH
    Biochemistry; 2001 Dec; 40(49):15024-30. PubMed ID: 11732924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence quenching studies of Trp repressor-operator interaction.
    Blicharska Z; Wasylewski Z
    J Protein Chem; 1999 Nov; 18(8):823-30. PubMed ID: 10839618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution.
    Arrowsmith C; Pachter R; Altman R; Jardetzky O
    Eur J Biochem; 1991 Nov; 202(1):53-66. PubMed ID: 1935980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of the local structure around tryptophan 51 and 64 in recombinant human erythropoietin by tryptophan phosphorescence.
    Kerwin BA; Aoki KH; Gonelli M; Strambini GB
    Photochem Photobiol; 2008; 84(5):1172-81. PubMed ID: 18331401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical studies of tyrosine and tryptophan residues in mammalian A1 heterogeneous nuclear ribonucleoprotein. Support for a segmented structure.
    Casas-Finet JR; Karpel RL; Maki AH; Kumar A; Wilson SH
    J Mol Biol; 1991 Sep; 221(2):693-709. PubMed ID: 1656054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence studies of rat cellular retinol binding protein II produced in Escherichia coli: an analysis of four tryptophan substitution mutants.
    Locke BC; MacInnis JM; Qian S; Gordon JI; Li E; Fleming GR; Yang NC
    Biochemistry; 1992 Mar; 31(8):2376-83. PubMed ID: 1540594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence study of Escherichia coli cyclic AMP receptor protein.
    Wasylewski M; MaƂecki J; Wasylewski Z
    J Protein Chem; 1995 Jul; 14(5):299-308. PubMed ID: 8590598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.