These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 8369288)
1. Acrylodan can label amino as well as sulfhydryl groups: results with low-density lipoprotein, lipoprotein[a], and lipid-free proteins. Mims MP; Sturgis CB; Sparrow JT; Morrisett JD Biochemistry; 1993 Sep; 32(35):9215-20. PubMed ID: 8369288 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of electrochemically and fluorometrically addressed molecular reporter groups: effects of protein microenvironment. Trammell SA; Jhaveri SD; LaBrenz SR; Mauro JM Biosens Bioelectron; 2003 Dec; 19(4):373-82. PubMed ID: 14615096 [TBL] [Abstract][Full Text] [Related]
3. Dynamics surrounding Cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin. Wang R; Sun S; Bekos EJ; Bright FV Anal Chem; 1995 Jan; 67(1):149-59. PubMed ID: 7864387 [TBL] [Abstract][Full Text] [Related]
4. Sulfhydryl-selective fluorescence labeling of lipoprotein(a) reveals evidence for one single disulfide linkage between apoproteins(a) and B-100. Sommer A; Gorges R; Kostner GM; Paltauf F; Hermetter A Biochemistry; 1991 Nov; 30(47):11245-9. PubMed ID: 1835655 [TBL] [Abstract][Full Text] [Related]
5. Accessibility of the fluorescent reporter group in native, silica-adsorbed, and covalently attached acrylodan-labeled serum albumins. Ingersoll CM; Jordan JD; Bright FV Anal Chem; 1996 Sep; 68(18):3194-8. PubMed ID: 8797379 [TBL] [Abstract][Full Text] [Related]
6. Site-specific chemical modification of interleukin-1 beta by acrylodan at cysteine 8 and lysine 103. Yem AW; Epps DE; Mathews WR; Guido DM; Richard KA; Staite ND; Deibel MR J Biol Chem; 1992 Feb; 267(5):3122-8. PubMed ID: 1531337 [TBL] [Abstract][Full Text] [Related]
7. Effect of N-B transition on the microenvironment surrounding 34Cys in human serum albumin. Narazaki R; Maruyama T; Otagiri M Biol Pharm Bull; 1997 Apr; 20(4):452-4. PubMed ID: 9145230 [TBL] [Abstract][Full Text] [Related]
8. Characterization of apolipoprotein A-I structure using a cysteine-specific fluorescence probe. Tricerri MA; Behling Agree AK; Sanchez SA; Jonas A Biochemistry; 2000 Nov; 39(47):14682-91. PubMed ID: 11087425 [TBL] [Abstract][Full Text] [Related]
9. Probing the cysteine 34 residue in human serum albumin using fluorescence techniques. Narazaki R; Maruyama T; Otagiri M Biochim Biophys Acta; 1997 Apr; 1338(2):275-81. PubMed ID: 9128146 [TBL] [Abstract][Full Text] [Related]
11. A dynamical investigation of acrylodan-labeled mutant phosphate binding protein. Lundgren JS; Salins LL; Kaneva I; Daunert S Anal Chem; 1999 Feb; 71(3):589-95. PubMed ID: 9989379 [TBL] [Abstract][Full Text] [Related]
12. A fluorescent derivative of the oligomycin-sensitivity conferring protein (acrylodan-OSCP). Evidence for polarity changes in the environment of CYS118 of OSCP upon binding to mitochondrial F1. Dupuis A; Duszynski J; Vignais PV Biochem Biophys Res Commun; 1987 Jan; 142(1):31-7. PubMed ID: 2880585 [TBL] [Abstract][Full Text] [Related]
13. Resonance energy transfer between tryptophan-214 in human serum albumin and acrylodan, prodan, and promen. González-Jiménez J; Cortijo M Protein J; 2004 Jul; 23(5):351-5. PubMed ID: 15328891 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of acrylodan-labeled bovine and human serum albumin sequestered within aerosol-OT reverse micelles. Lundgren JS; Heitz MP; Bright FV Anal Chem; 1995 Oct; 67(20):3775-81. PubMed ID: 8644923 [TBL] [Abstract][Full Text] [Related]
15. Urea-induced denaturation of human serum albumin labeled with acrylodan. González-Jiménez J; Cortijo M J Protein Chem; 2002 Feb; 21(2):75-9. PubMed ID: 11934277 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence of equine platelet tropomyosin labeled with acrylodan. Clark ID; Burtnick LD Arch Biochem Biophys; 1988 Feb; 260(2):595-600. PubMed ID: 3341759 [TBL] [Abstract][Full Text] [Related]
17. Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study. Moreno F; Cortijo M; González-Jiménez J Photochem Photobiol; 1999 Nov; 70(5):695-700. PubMed ID: 10568165 [TBL] [Abstract][Full Text] [Related]
18. [Analysis of log-normal components of fluorescence spectra of prodan and acrylodan bound to proteins]. Emel'ianenko VI; Reshetniak IaK; Andreev OA; Burshteĭn EA Biofizika; 2000; 45(2):207-19. PubMed ID: 10776530 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of acrylodan-labeled bovine and human serum albumin entrapped in a sol-gel-derived biogel. Jordan JD; Dunbar RA; Bright FV Anal Chem; 1995 Jul; 67(14):2436-43. PubMed ID: 8686877 [TBL] [Abstract][Full Text] [Related]
20. Proposed mechanisms for binding of apo[a] kringle type 9 to apo B-100 in human lipoprotein[a]. Guevara J; Spurlino J; Jan AY; Yang CY; Tulinsky A; Prasad BV; Gaubatz JW; Morrisett JD Biophys J; 1993 Mar; 64(3):686-700. PubMed ID: 8386013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]