These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8369422)

  • 1. Glycerol effects on protein flexibility: a tryptophan phosphorescence study.
    Gonnelli M; Strambini GB
    Biophys J; 1993 Jul; 65(1):131-7. PubMed ID: 8369422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure effects on protein flexibility monomeric proteins.
    Cioni P; Strambini GB
    J Mol Biol; 1994 Sep; 242(3):291-301. PubMed ID: 8089848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplitude spectrum of structural fluctuations in proteins from the internal diffusion of solutes of increasing molecular size: a Trp phosphorescence quenching study.
    Strambini GB; Gonnelli M
    Biochemistry; 2011 Feb; 50(6):970-80. PubMed ID: 21218776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of heavy water on protein flexibility.
    Cioni P; Strambini GB
    Biophys J; 2002 Jun; 82(6):3246-53. PubMed ID: 12023248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure/temperature effects on protein flexibilty from acrylamide quenching of protein phosphorescence.
    Cioni P; Strambini GB
    J Mol Biol; 1999 Aug; 291(4):955-64. PubMed ID: 10452899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein phosphorescence quenching: distinction between quencher penetration and external quenching mechanisms.
    Strambini GB; Gonnelli M
    J Phys Chem B; 2010 Jul; 114(29):9691-7. PubMed ID: 20597520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No effect of covalently linked poly(ethylene glycol) chains on protein internal dynamics.
    Gonnelli M; Strambini GB
    Biochim Biophys Acta; 2009 Mar; 1794(3):569-76. PubMed ID: 19150514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein in sugar films and in glycerol/water as examined by infrared spectroscopy and by the fluorescence and phosphorescence of tryptophan.
    Wright WW; Guffanti GT; Vanderkooi JM
    Biophys J; 2003 Sep; 85(3):1980-95. PubMed ID: 12944311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room temperature phosphorescence study on the structural flexibility of single tryptophan containing proteins.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():380-7. PubMed ID: 25025310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant.
    Tognotti D; Gabellieri E; Morelli E; Cioni P
    Biophys Chem; 2013 Dec; 182():44-50. PubMed ID: 23816248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration.
    Strambini GB; Gonnelli M
    Biochemistry; 2009 Aug; 48(31):7482-91. PubMed ID: 19594170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure effects on the structure of oligomeric proteins prior to subunit dissociation.
    Cioni P; Strambini GB
    J Mol Biol; 1996 Nov; 263(5):789-99. PubMed ID: 8947576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of tryptophan phosphorescence in proteins.
    Strambini GB; Gabellieri E
    Photochem Photobiol; 1990 Jun; 51(6):643-8. PubMed ID: 2195561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan interactions with glycerol/water and trehalose/sucrose cryosolvents: infrared and fluorescence spectroscopy and ab initio calculations.
    Dashnau JL; Zelent B; Vanderkooi JM
    Biophys Chem; 2005 Apr; 114(1):71-83. PubMed ID: 15792863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins.
    Eftink MR; Hagaman KA
    Biophys Chem; 1986 Dec; 25(3):277-82. PubMed ID: 3103704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscous cosolvent effect on the ultrasonic absorption of bovine serum albumin.
    Almagor A; Yedgar S; Gavish B
    Biophys J; 1992 Feb; 61(2):480-6. PubMed ID: 1547333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between external viscosity and the intramolecular dynamics of ribonuclease T1: a two-phase model for the quenching of protein fluorescence.
    Somogyi B; Punyiczki M; Hedstrom J; Norman JA; Prendergast FG; Rosenberg A
    Biochim Biophys Acta; 1994 Nov; 1209(1):61-8. PubMed ID: 7947983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan phosphorescence of ribonuclease T1 as a probe of protein flexibility.
    Gonnelli M; Puntoni A; Strambini GB
    J Fluoresc; 1992 Sep; 2(3):157-65. PubMed ID: 24241626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of proteins encapsulated in silica hydrogels by Trp phosphorescence.
    Gonnelli M; Strambini GB
    Biophys Chem; 2003 May; 104(1):155-69. PubMed ID: 12834835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.