BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 8369423)

  • 1. The relationship of agarose gel structure to the sieving of spheres during agarose gel electrophoresis.
    Griess GA; Guiseley KB; Serwer P
    Biophys J; 1993 Jul; 65(1):138-48. PubMed ID: 8369423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of small-pore gels by an electrically charged agarose derivative.
    Griess GA; Guiseley KB; Miller MM; Harris RA; Serwer P
    J Struct Biol; 1998 Oct; 123(2):134-42. PubMed ID: 9843667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sieving of rod-shaped viruses during agarose gel electrophoresis. I. Comparison with the sieving of spheres.
    Griess GA; Moreno ET; Herrmann R; Serwer P
    Biopolymers; 1990 Jul-Aug 5; 29(8-9):1277-87. PubMed ID: 2369633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sieving of spheres during agarose gel electrophoresis: quantitation and modeling.
    Griess GA; Moreno ET; Easom RA; Serwer P
    Biopolymers; 1989 Aug; 28(8):1475-84. PubMed ID: 2752101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of excluded volume to increase the heterogeneity of pore size in agarose gels.
    Serwer P; Harris RA; Miller MM; Griess GA
    Electrophoresis; 1996 Jun; 17(6):971-6. PubMed ID: 8832161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exclusion of spheres by agarose gels during agarose gel electrophoresis: dependence on the sphere's radius and the gel's concentration.
    Serwer P; Hayes SJ
    Anal Biochem; 1986 Oct; 158(1):72-8. PubMed ID: 3799974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient electric birefringence of agarose gels. II. Reversing electric fields and comparison with other polymer gels.
    Stellwagen J; Stellwagen NC
    Biopolymers; 1994 Sep; 34(9):1259-73. PubMed ID: 7948738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the "door-corridor" model of gel electrophoresis. I. Equations describing the relationship between mobility and size of DNA fragments and protein-SDS complexes.
    Kozulić B
    Appl Theor Electrophor; 1994; 4(3):125-36. PubMed ID: 7612694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Procedures and computer program for deriving the Ferguson plot from electrophoresis in a single pore gradient gel: application to agarose gel and a polystyrene particle.
    Tietz D; Gombocz E; Chrambach A
    Electrophoresis; 1991 Oct; 12(10):710-21. PubMed ID: 1802689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agarose gel electrophoresis of bacteriophages and related particles.
    Serwer P
    J Chromatogr; 1987 Jul; 418():345-57. PubMed ID: 3305547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects.
    Maaloum M; Pernodet N; Tinland B
    Electrophoresis; 1998 Jul; 19(10):1606-10. PubMed ID: 9719534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The resolution between two native proteins and between their sodium dodecyl sulfate-complexes in agarose and polyacrylamide gel electrophoresis.
    Chen N; Chrambach A
    Electrophoresis; 1997 Jun; 18(7):1126-32. PubMed ID: 9237567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A freeze-and-thaw method to reuse agarose gels for DNA electrophoresis.
    Sasagawa N
    Biosci Trends; 2018; 12(6):627-629. PubMed ID: 30674763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoresis of DNA in oriented agarose gels.
    Holmes DL; Stellwagen NC
    J Biomol Struct Dyn; 1989 Oct; 7(2):311-27. PubMed ID: 2604908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of the variable agarose fiber dimensions on the basis of mobility data derived from gel electrophoresis and using the Ogston theory.
    Tietz D; Chrambach A
    Anal Biochem; 1987 Mar; 161(2):395-411. PubMed ID: 3578803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative agarose gel electrophoresis of chromatin: nucleosome-dependent changes in charge, sharp, and deformability at low ionic strength.
    Fletcher TM; Krishnan U; Serwer P; Hansen JC
    Biochemistry; 1994 Mar; 33(8):2226-33. PubMed ID: 8117680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of linear polymer additives on the electroosmotic characteristics of agarose gels in ultrathin-layer electrophoresis.
    Lengyel T; Guttman A
    J Chromatogr A; 1999 Aug; 853(1-2):511-8. PubMed ID: 10486760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose-dextran gels as synthetic analogs of glomerular basement membrane: water permeability.
    White JA; Deen WM
    Biophys J; 2002 Apr; 82(4):2081-9. PubMed ID: 11916864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of network structure in agarose gels by aging during storage studied by NMR and electrophoresis.
    Descallar FBA; Matsukawa S
    Carbohydr Polym; 2020 Oct; 245():116497. PubMed ID: 32718610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolution of a paradox in the electrophoresis of DNA in agarose gels.
    Stellwagen NC; Holmes DL
    Electrophoresis; 1990 Aug; 11(8):649-52. PubMed ID: 2289466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.