BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 8369434)

  • 1. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids.
    Keller SL; Bezrukov SM; Gruner SM; Tate MW; Vodyanoy I; Parsegian VA
    Biophys J; 1993 Jul; 65(1):23-7. PubMed ID: 8369434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lipid characteristics on the structure of transmembrane proteins.
    Dan N; Safran SA
    Biophys J; 1998 Sep; 75(3):1410-4. PubMed ID: 9726942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the thermotropic phase behavior of phosphatidylcholines containing 2-alkyl substituted fatty acyl chains: a new class of phosphatidylcholines forming inverted nonlamellar phases.
    Lewis RN; McElhaney RN; Harper PE; Turner DC; Gruner SM
    Biophys J; 1994 Apr; 66(4):1088-103. PubMed ID: 8038381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alamethicin channel conductance modified by lipid charge.
    Aguilella VM; Bezrukov SM
    Eur Biophys J; 2001 Aug; 30(4):233-41. PubMed ID: 11548125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids.
    Botelho AV; Gibson NJ; Thurmond RL; Wang Y; Brown MF
    Biochemistry; 2002 May; 41(20):6354-68. PubMed ID: 12009897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 2001 Jan; 80(1):331-46. PubMed ID: 11159406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric detection of curvature strain in phospholipid bilayers.
    Epand RM; Epand RF
    Biophys J; 1994 May; 66(5):1450-6. PubMed ID: 8061194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations.
    Tieleman DP; Sansom MS; Berendsen HJ
    Biophys J; 1999 Jan; 76(1 Pt 1):40-9. PubMed ID: 9876121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy.
    Alves ID; Salgado GF; Salamon Z; Brown MF; Tollin G; Hruby VJ
    Biophys J; 2005 Jan; 88(1):198-210. PubMed ID: 15501933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane.
    Goss R; Latowski D; Grzyb J; Vieler A; Lohr M; Wilhelm C; Strzalka K
    Biochim Biophys Acta; 2007 Jan; 1768(1):67-75. PubMed ID: 16843433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 1999 Jun; 76(6):3186-91. PubMed ID: 10354443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain.
    Hallock KJ; Lee DK; Ramamoorthy A
    Biophys J; 2003 May; 84(5):3052-60. PubMed ID: 12719236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic curvature in normal and inverted lipid structures and in membranes.
    Marsh D
    Biophys J; 1996 May; 70(5):2248-55. PubMed ID: 9172748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations suggest a pathway for the transverse diffusion of a hydrophobic peptide across a lipid bilayer.
    Kessel A; Schulten K; Ben-Tal N
    Biophys J; 2000 Nov; 79(5):2322-30. PubMed ID: 11053112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-dependent conductance induced by alamethicin-phospholipid conjugates in lipid bilayers.
    Latorre R; Miller CG; Quay S
    Biophys J; 1981 Dec; 36(3):803-9. PubMed ID: 7326333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of alamethicin insertion into lipid bilayers.
    He K; Ludtke SJ; Heller WT; Huang HW
    Biophys J; 1996 Nov; 71(5):2669-79. PubMed ID: 8913604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration.
    Wang KF; Nagarajan R; Camesano TA
    Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.