These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8369458)

  • 1. Bioelectrorheological model of the cell. 5. Electrodestruction of cellular membrane in alternating electric field.
    Pawłowski P; Szutowicz I; Marszałek P; Fikus M
    Biophys J; 1993 Jul; 65(1):541-9. PubMed ID: 8369458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of cellular membrane in alternating electric field.
    Pawłowski P; Fikus M
    Biophys J; 1993 Jul; 65(1):535-40. PubMed ID: 8369457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrorheological model of the cell. VI. Experimental verification of the rheological model of cytoplasmic membrane.
    Pawlowski P; Szutowicz I; Rózycki S; Zieliński J; Fikus M
    Biophys J; 1996 Feb; 70(2):1024-6. PubMed ID: 8789120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectrorheological model of the cell. 2. Analysis of creep and its experimental verification.
    Fikus M; Pawlowski P
    J Theor Biol; 1989 Apr; 137(4):365-73. PubMed ID: 2533955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrorheological model of the cell. 3. Viscoelastic shear deformation of the membrane.
    Poznański J; Pawłowski P; Fikus M
    Biophys J; 1992 Mar; 61(3):612-20. PubMed ID: 1387010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrorheological model of the cell. 8. Cellular deformation under prolonged and recurrent shear stress.
    Pawłowski P; Fikus M
    Biorheology; 1998; 35(4-5):311-24. PubMed ID: 10474657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectrorheological model of the cell. 7. Cellular deformation in the presence of cytochalasin B.
    Pawlowski P; Poznanska A; Fikus M
    Biorheology; 1997; 34(3):171-93. PubMed ID: 9474262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of the effect of weak electromagnetic fields on the living body].
    Sidorenko VM
    Biofizika; 2001; 46(3):500-4. PubMed ID: 11449551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrorheological model of the cell. 1. Analysis of stresses and deformations.
    Pawlowski P; Fikus M
    J Theor Biol; 1989 Apr; 137(3):321-37. PubMed ID: 2601349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells.
    Gimsa J; Marszalek P; Loewe U; Tsong TY
    Biophys J; 1991 Oct; 60(4):749-60. PubMed ID: 1835890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical predictions of electromechanical deformation of cells subjected to high voltages for membrane electroporation.
    Joshi RP; Hu Q; Schoenbach KH; Hjalmarson HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021913. PubMed ID: 11863569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of electrical fields inside a biological structure.
    Drago GP; Ridella S
    Br J Cancer Suppl; 1982 Mar; 5():215-9. PubMed ID: 6279135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of electric parameters of cell membranes by a dielectrophoresis method.
    Marszalek P; Zielinsky JJ; Fikus M; Tsong TY
    Biophys J; 1991 May; 59(5):982-7. PubMed ID: 1831052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric field--biological systems interaction applied to animals and man.
    Michaelson SM
    Vet Hum Toxicol; 1986 Feb; 28(1):19-30. PubMed ID: 3705432
    [No Abstract]   [Full Text] [Related]  

  • 15. Evaluation of the electrostatic field strength at the site of exocytosis in adrenal chromaffin cells.
    Rosenheck K
    Biophys J; 1998 Sep; 75(3):1237-43. PubMed ID: 9726926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields.
    Xie TD; Tsong TY
    Biophys J; 1990 Oct; 58(4):897-903. PubMed ID: 2248994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization.
    Teissié J; Rols MP
    Biophys J; 1993 Jul; 65(1):409-13. PubMed ID: 8369446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell shape-dependent rectification of surface receptor transport in a sinusoidal electric field.
    Lee RC; Gowrishankar TR; Basch RM; Patel PK; Golan DE
    Biophys J; 1993 Jan; 64(1):44-57. PubMed ID: 8381681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Schwan equation and transmembrane potential induced by alternating electric field.
    Marszalek P; Liu DS; Tsong TY
    Biophys J; 1990 Oct; 58(4):1053-8. PubMed ID: 2248989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of electrical phenomena accompanying the growth of Neurospora crassa hyphae: theory and experiment.
    Aslanidi KB; Aslanidi OV; Vachadze DM; Mornev OA; Potapova TV; Chailakhyan LM; Shtemanetyan EG
    Membr Cell Biol; 1997; 11(3):349-65. PubMed ID: 9460054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.