These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8369477)

  • 21. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Developmental and locomotor disorders in children].
    Assaiante C; Chabrol B
    Rev Neurol (Paris); 2010 Feb; 166(2):149-57. PubMed ID: 20079910
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Horizontal plane head stabilization during locomotor tasks.
    Cromwell RL; Newton RA; Carlton LG
    J Mot Behav; 2001 Mar; 33(1):49-58. PubMed ID: 11265057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Locomotor skills and balance strategies in children with internal rotations of the lower limbs.
    Mallau S; Mesure S; Viehweger E; Jacquemier M; Bollini G; Assaiante C
    J Orthop Res; 2008 Jan; 26(1):117-25. PubMed ID: 17676623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-effect of forward and backward locomotion on body orientation in space during quiet stance.
    De Nunzio AM; Zanetti C; Schieppati M
    Eur J Appl Physiol; 2009 Jan; 105(2):297-307. PubMed ID: 18982347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hip recovery strategy used by below-knee amputees following mediolateral foot perturbations.
    Miller SE; Segal AD; Klute GK; Neptune RR
    J Biomech; 2018 Jul; 76():61-67. PubMed ID: 29887363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of locomotor balance control in healthy children.
    Assaiante C
    Neurosci Biobehav Rev; 1998 Jul; 22(4):527-32. PubMed ID: 9595565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of limiting anterior displacement of the center of foot pressure on anticipatory postural control during bilateral shoulder flexion.
    Fujiwara K; Yaguchi C
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1460-6. PubMed ID: 23968681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direction of foot force for pushes against a fixed pedal: variation with pedal position.
    Gruben KG; Rogers LM; Schmidt MW; Tan L
    Motor Control; 2003 Oct; 7(4):362-77. PubMed ID: 14999134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aging and the mechanisms underlying head and postural control during voluntary motion.
    Di Fabio RP; Emasithi A
    Phys Ther; 1997 May; 77(5):458-75. PubMed ID: 9149758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gradual training reduces the challenge to lateral balance control during practice and subsequent performance of a novel locomotor task.
    Sawers A; Kelly VE; Kartin D; Hahn ME
    Gait Posture; 2013 Sep; 38(4):907-11. PubMed ID: 23706506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase-dependent modulation of proximal and distal postural responses to slips in young and older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1999 Feb; 54(2):M89-102. PubMed ID: 10051861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aging of human supraspinal locomotor and postural control in fMRI.
    Zwergal A; Linn J; Xiong G; Brandt T; Strupp M; Jahn K
    Neurobiol Aging; 2012 Jun; 33(6):1073-84. PubMed ID: 21051105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complementary mechanisms for upright balance during walking.
    Reimann H; Fettrow TD; Thompson ED; Agada P; McFadyen BJ; Jeka JJ
    PLoS One; 2017; 12(2):e0172215. PubMed ID: 28234936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can external lateral stabilization reduce the energy cost of walking in persons with a lower limb amputation?
    IJmker T; Noten S; Lamoth CJ; Beek PJ; van der Woude LH; Houdijk H
    Gait Posture; 2014 Sep; 40(4):616-21. PubMed ID: 25108643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic measures of restabilisation during volitional stepping reveal age-related alterations in the control of mediolateral dynamic stability.
    Singer JC; McIlroy WE; Prentice SD
    J Biomech; 2014 Nov; 47(14):3539-45. PubMed ID: 25262875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity.
    Afschrift M; van Deursen R; De Groote F; Jonkers I
    Gait Posture; 2019 Feb; 68():575-582. PubMed ID: 30654320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of postural control in healthy children: a functional approach.
    Assaiante C; Mallau S; Viel S; Jover M; Schmitz C
    Neural Plast; 2005; 12(2-3):109-18; discussion 263-72. PubMed ID: 16097479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.