These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 8371272)

  • 1. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a knowledge-based force field for off-lattice simulations of protein structure.
    Liwo A; Ołdziej S; Kaźmierkiewicz R; Groth M; Czaplewski C
    Acta Biochim Pol; 1997; 44(3):527-47. PubMed ID: 9511963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin.
    Ozkan SB; Meirovitch H
    J Comput Chem; 2004 Mar; 25(4):565-72. PubMed ID: 14735574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Native atomic burials, supplemented by physically motivated hydrogen bond constraints, contain sufficient information to determine the tertiary structure of small globular proteins.
    Pereira de Araújo AF; Gomes AL; Bursztyn AA; Shakhnovich EI
    Proteins; 2008 Feb; 70(3):971-83. PubMed ID: 17847091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding.
    Zhang Y; Kihara D; Skolnick J
    Proteins; 2002 Aug; 48(2):192-201. PubMed ID: 12112688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):353-66. PubMed ID: 8208727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice models of peptide aggregation: evaluation of conformational search algorithms.
    Oakley MT; Garibaldi JM; Hirst JD
    J Comput Chem; 2005 Nov; 26(15):1638-46. PubMed ID: 16170797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of protein folding. A lattice model study of the requirements for folding to the native state.
    Sali A; Shakhnovich E; Karplus M
    J Mol Biol; 1994 Feb; 235(5):1614-36. PubMed ID: 8107095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New developments of the electrostatically driven Monte Carlo method: test on the membrane-bound portion of melittin.
    Ripoll DR; Liwo A; Scheraga HA
    Biopolymers; 1998 Aug; 46(2):117-26. PubMed ID: 9664845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The loop problem in proteins: a Monte Carlo simulated annealing approach.
    Carlacci L; Englander SW
    Biopolymers; 1993 Aug; 33(8):1271-86. PubMed ID: 7689864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein structure prediction with the UNRES force-field using Replica-Exchange Monte Carlo-with-Minimization; Comparison with MCM, CSA, and CFMC.
    Nanias M; Chinchio M; Ołdziej S; Czaplewski C; Scheraga HA
    J Comput Chem; 2005 Nov; 26(14):1472-86. PubMed ID: 16088925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting protein mutant energetics by self-consistent ensemble optimization.
    Lee C
    J Mol Biol; 1994 Feb; 236(3):918-39. PubMed ID: 8114102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water.
    Carlacci L
    Biopolymers; 2001 Apr; 58(4):359-73. PubMed ID: 11180050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population-based local search for protein folding simulation in the MJ energy model and cubic lattices.
    Kapsokalivas L; Gan X; Albrecht AA; Steinhöfel K
    Comput Biol Chem; 2009 Aug; 33(4):283-94. PubMed ID: 19647489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.