BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 8371757)

  • 1. Oxygen sensing in airway chemoreceptors.
    Youngson C; Nurse C; Yeger H; Cutz E
    Nature; 1993 Sep; 365(6442):153-5. PubMed ID: 8371757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase does not account fully for O2-sensing in model airway chemoreceptor cells.
    O'Kelly I; Peers C; Kemp PJ
    Biochem Biophys Res Commun; 2001 May; 283(5):1131-4. PubMed ID: 11355890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells.
    Youngson C; Nurse C; Yeger H; Curnutte JT; Vollmer C; Wong V; Cutz E
    Microsc Res Tech; 1997 Apr; 37(1):101-6. PubMed ID: 9144626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines.
    Wang D; Youngson C; Wong V; Yeger H; Dinauer MC; Vega-Saenz Miera E; Rudy B; Cutz E
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13182-7. PubMed ID: 8917565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice.
    Fu XW; Wang D; Nurse CA; Dinauer MC; Cutz E
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4374-9. PubMed ID: 10760304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice.
    Thompson RJ; Farragher SM; Cutz E; Nurse CA
    Pflugers Arch; 2002 Jul; 444(4):539-48. PubMed ID: 12136274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen-sensing pathway for SK channels in the ovine adrenal medulla.
    Keating DJ; Rychkov GY; Giacomin P; Roberts ML
    Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):882-7. PubMed ID: 16173951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2-sensing by model airway chemoreceptors. Hypoxic inhibition of K+ channels in H146 cells.
    O'Kelly I; Peers C; Kemp PJ
    Adv Exp Med Biol; 2000; 475():611-22. PubMed ID: 10849701
    [No Abstract]   [Full Text] [Related]  

  • 10. Expression of functional purinergic receptors in pulmonary neuroepithelial bodies and their role in hypoxia chemotransmission.
    Fu XW; Nurse CA; Cutz E
    Biol Chem; 2004; 385(3-4):275-84. PubMed ID: 15134341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of mitochondrial KATP channel on voltage-gated K+ channel in 24 hour-hypoxic human pulmonary artery smooth muscle cells.
    Wang T; Zhang ZX; Xu YJ
    Chin Med J (Engl); 2005 Jan; 118(1):12-9. PubMed ID: 15642220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology.
    Gonzalez C; Agapito MT; Rocher A; Gomez-Niño A; Rigual R; Castañeda J; Conde SV; Obeso A
    Respir Physiol Neurobiol; 2010 Dec; 174(3):317-30. PubMed ID: 20833275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence.
    Buttigieg J; Pan J; Yeger H; Cutz E
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(7):L598-607. PubMed ID: 22865553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control.
    Olson KR
    J Exp Biol; 2008 Sep; 211(Pt 17):2727-34. PubMed ID: 18723529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O(2) sensing by airway chemoreceptor-derived cells. Protein kinase c activation reveals functional evidence for involvement of NADPH oxidase.
    O'Kelly I; Lewis A; Peers C; Kemp PJ
    J Biol Chem; 2000 Mar; 275(11):7684-92. PubMed ID: 10713079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell biology of pulmonary neuroepithelial bodies--validation of an in vitro model. I. Effects of hypoxia and Ca2+ ionophore on serotonin content and exocytosis of dense core vesicles.
    Cutz E; Speirs V; Yeger H; Newman C; Wang D; Perrin DG
    Anat Rec; 1993 May; 236(1):41-52. PubMed ID: 8507015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters?
    Prabhakar NR
    Exp Physiol; 2006 Jan; 91(1):17-23. PubMed ID: 16239252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances.
    Cutz E; Yeger H; Pan J
    Pediatr Dev Pathol; 2007; 10(6):419-35. PubMed ID: 18001162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of membrane currents in pulmonary neuroepithelial bodies: hypoxia-sensitive airway chemoreceptors.
    Youngson C; Nurse C; Yeger H; Cutz E
    Adv Exp Med Biol; 1994; 360():179-82. PubMed ID: 7872081
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.