These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8372969)

  • 1. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors.
    Patrash SJ; Zellers ET
    Anal Chem; 1993 Aug; 65(15):2055-66. PubMed ID: 8372969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays.
    Zellers ET; Batterman SA; Han M; Patrash SJ
    Anal Chem; 1995 Mar; 67(6):1092-106. PubMed ID: 7717524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.
    Hierlemann A; Zellers ET; Ricco AJ
    Anal Chem; 2001 Jul; 73(14):3458-66. PubMed ID: 11476248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.
    Grate JW; Patrash SJ; Kaganovet SN; Abraham MH; Wise BM; Gallagher NB
    Anal Chem; 2001 Nov; 73(21):5247-59. PubMed ID: 11721926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays.
    Zellers ET; Han M
    Anal Chem; 1996 Jul; 68(14):2409-18. PubMed ID: 8686930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for chemometric classification of unknown vapors from the responses of an array of volume-transducing sensors.
    Grate JW; Wise BM
    Anal Chem; 2001 May; 73(10):2239-44. PubMed ID: 11393847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers.
    Loui A; Ratto TV; Wilson TS; McCall SK; Mukerjee EV; Love AH; Hart BR
    Analyst; 2008 May; 133(5):608-15. PubMed ID: 18427681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses.
    Grate JW; Zellers ET
    Anal Chem; 2000 Jul; 72(13):2861-8. PubMed ID: 10905319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.
    Stahl U; Voigt A; Dirschka M; Barié N; Richter C; Waldbaur A; Gruhl FJ; Rapp BE; Rapp M; Länge K
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis.
    Park J; Groves WA; Zellers ET
    Anal Chem; 1999 Sep; 71(17):3877-86. PubMed ID: 10489533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array.
    Groves WA; Zellers ET
    Ann Occup Hyg; 2001 Nov; 45(8):609-23. PubMed ID: 11718657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective real-time measurement of styrene vapor using a surface-acoustic-wave sensor with a regenerable organoplatinum coating.
    Zellers ET; Hassold N; White RM; Rappaport SM
    Anal Chem; 1990 Jul; 62(13):1227-32. PubMed ID: 2372126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors.
    Grate JW; Kaganove SN; Bhethanabotla VR
    Anal Chem; 1998 Jan; 70(1):199-203. PubMed ID: 21644612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of sensor characteristics of three real-time monitors for organic vapors.
    Hori H; Ishimatsu S; Fueta Y; Hinoue M; Ishidao T
    J Occup Health; 2015; 57(1):13-9. PubMed ID: 25422129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays.
    Grate JW; Patrash SJ; Kaganove SN; Wise BM
    Anal Chem; 1999 Mar; 71(5):1033-40. PubMed ID: 21662772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing a limit of recognition for a vapor sensor array.
    Zellers ET; Park J; Hsu T; Groves WA
    Anal Chem; 1998 Oct; 70(19):4191-201. PubMed ID: 9784753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of chemical components in a binary solvent vapor mixture using carbon/polymer composite-based chemiresistors.
    Patel SV; Jenkins MW; Hughes RC; Yelton WG; Ricco AJ
    Anal Chem; 2000 Apr; 72(7):1532-42. PubMed ID: 10763250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits of recognition for simple vapor mixtures determined with a microsensor array.
    Hsieh MD; Zellers ET
    Anal Chem; 2004 Apr; 76(7):1885-95. PubMed ID: 15053648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures.
    Lu CJ; Whiting J; Sacks RD; Zellers ET
    Anal Chem; 2003 Mar; 75(6):1400-9. PubMed ID: 12659202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors.
    Belmares M; Blanco M; Goddard WA; Ross RB; Caldwell G; Chou SH; Pham J; Olofson PM; Thomas C
    J Comput Chem; 2004 Nov; 25(15):1814-26. PubMed ID: 15389751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.