BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 8373157)

  • 1. Estimates of glycolysis, pyruvate (de)carboxylation, pentose phosphate pathway, and methyl succinate metabolism in incapacitated pancreatic islets.
    MacDonald MJ
    Arch Biochem Biophys; 1993 Sep; 305(2):205-14. PubMed ID: 8373157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of the insulin secretagogue methyl succinate by pancreatic islets.
    MacDonald MJ
    Arch Biochem Biophys; 1993 Jan; 300(1):201-5. PubMed ID: 8424653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion.
    MacDonald MJ
    J Biol Chem; 1995 Aug; 270(34):20051-8. PubMed ID: 7650022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose enters mitochondrial metabolism via both carboxylation and decarboxylation of pyruvate in pancreatic islets.
    MacDonald MJ
    Metabolism; 1993 Oct; 42(10):1229-31. PubMed ID: 8412734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyruvate dehydrogenase and pyruvate carboxylase. Sites of pretranslational regulation by glucose of glucose-induced insulin release in pancreatic islets.
    MacDonald MJ; Kaysen JH; Moran SM; Pomije CE
    J Biol Chem; 1991 Nov; 266(33):22392-7. PubMed ID: 1939263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the carboxylation of pyruvate in pancreatic islets.
    Khan A; Ling ZC; Landau BR
    J Biol Chem; 1996 Feb; 271(5):2539-42. PubMed ID: 8576218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets.
    MacDonald MJ; McKenzie DI; Walker TM; Kaysen JH
    Horm Metab Res; 1992 Apr; 24(4):158-60. PubMed ID: 1601389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic effects and fate of succinate esters in pancreatic islets.
    Malaisse WJ; Sener A
    Am J Physiol; 1993 Mar; 264(3 Pt 1):E434-40. PubMed ID: 8460691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity to beta-cell secretagogues in cultured rat pancreatic islets exposed to human interleukin-1 beta.
    Eizirik DL; Sandler S; Hallberg A; Bendtzen K; Sener A; Malaisse WJ
    Endocrinology; 1989 Aug; 125(2):752-9. PubMed ID: 2666106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway.
    Goodwin GW; Cohen DM; Taegtmeyer H
    Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E502-8. PubMed ID: 11171606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of glucose on pyruvate carboxylase expression in pancreatic islets.
    MacDonald MJ
    Arch Biochem Biophys; 1995 May; 319(1):128-32. PubMed ID: 7771776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human interleukin-1 beta induced stimulation of insulin release from rat pancreatic islets is accompanied by an increase in mitochondrial oxidative events.
    Eizirik DL; Sandler S
    Diabetologia; 1989 Nov; 32(11):769-73. PubMed ID: 2687062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse lacking NAD+-linked glycerol phosphate dehydrogenase has normal pancreatic beta cell function but abnormal metabolite pattern in skeletal muscle.
    MacDonald MJ; Marshall LK
    Arch Biochem Biophys; 2000 Dec; 384(1):143-53. PubMed ID: 11147825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic characterization of three hamster melanoma variants.
    Scisłowski PW; Słomiński A; Bomirski A; Zydowo M
    Neoplasma; 1985; 32(5):593-8. PubMed ID: 4069292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of non-oxidative glucose utilization by L-carnitine in isolated myocytes.
    Abdel-aleem S; Sayed-Ahmed M; Nada MA; Hendrickson SC; St Louis J; Lowe JE
    J Mol Cell Cardiol; 1995 Nov; 27(11):2465-72. PubMed ID: 8596197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulinotropic action of methyl pyruvate: enzymatic and metabolic aspects.
    Jijakli H; Nadi AB; Cook L; Best L; Sener A; Malaisse WJ
    Arch Biochem Biophys; 1996 Nov; 335(2):245-57. PubMed ID: 8914921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose metabolism in pancreatic islets. Regulation of aerobic glycolysis and pyruvate decarboxylation.
    Malaisse WJ; Rasschaert J; Conget I; Sener A
    Int J Biochem; 1991; 23(9):955-9. PubMed ID: 1773901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of D-[3-3H]glucose, D-[5-3H]glucose, D-[U-14C]glucose, D-[1-14C]glucose and D-[6-14C]glucose in pancreatic islets in an animal model of type-2 diabetes.
    Giroix MH; Nadi AB; Sener A; Portha B; Malaisse WJ
    Int J Mol Med; 2002 Apr; 9(4):381-4. PubMed ID: 11891532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexose metabolism in pancreatic islets: succinate dehydrogenase activity in islet homogenates.
    Rasschaert J; Malaisse WJ
    Cell Biochem Funct; 1993 Sep; 11(3):155-8. PubMed ID: 8403229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.