These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 8373361)

  • 1. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
    Garrido-del Solo C; García-Cánovas F; Havsteen BH; Varón-Castellanos R
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):459-64. PubMed ID: 8373361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of an enzyme reaction in which both the enzyme-substrate complex and the product are unstable or only the product is unstable.
    Garrido-del Solo C; García-Cánovas F; Havsteen BH; Valero E; Varón R
    Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):435-40. PubMed ID: 7980401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the kinetics of enzymatic systems with unstable species.
    Garrido-del Solo C; Havsteen BH; Varon R
    Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible, uncompetitive inhibitor.
    Moruno-Dávila MA; Solo CG; García-Moreno M; García-Cánovas F; Varón R
    Biosystems; 2001 Jun; 61(1):5-14. PubMed ID: 11448521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of an enzyme-catalysed reaction in the presence of novel irreversible-type inhibitors that react with the product of enzymatic catalysis.
    Navarro-Lozano MJ; Valero E; Varon R; Garcia-Carmona F
    Bull Math Biol; 1995 Jan; 57(1):157-68. PubMed ID: 7833851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The kinetic effect of product instability in a Michaelis-Menten mechanism with competitive inhibition.
    Garrido-del Solo C; Moruno MA; Havsteen BH; Castellanos RV
    Biosystems; 2000; 56(2-3):75-82. PubMed ID: 10880856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On a nonelementary progress curve equation and its application in enzyme kinetics.
    Golicnik M
    J Chem Inf Comput Sci; 2002; 42(2):157-61. PubMed ID: 11911683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.
    Bezerra RM; Fraga I; Dias AA
    Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of enzyme reactions with slow-binding inhibition.
    Garrido-del Solo C; García-Cánovas F; Havesteen BH; Castellanos RV
    Biosystems; 1999 Sep; 51(3):169-80. PubMed ID: 10530756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-integrated method for the determination of enzyme kinetic parameters and graphical representation of the Michaelis-Menten equation.
    Naqui A; Chance B
    Anal Biochem; 1984 Aug; 141(1):179-83. PubMed ID: 6496926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient-phase kinetics of enzyme inactivation induced by suicide substrates.
    Tudela J; García Cánovas F; Varón R; García Carmona F; Gálvez J; Lozano JA
    Biochim Biophys Acta; 1987 Apr; 912(3):408-16. PubMed ID: 3567209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Michaelis-Menten equation for degradation of insoluble substrate.
    Andersen M; Kari J; Borch K; Westh P
    Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.
    Moruno-Dávila MA; Garrido-del Solo C; García-Moreno M; Havsteen BH; Garcia-Sevilla F; Garcia-Cánovas F; Varón R
    Int J Biochem Cell Biol; 2001 Feb; 33(2):181-91. PubMed ID: 11240375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions.
    Duggleby RG; Clarke RB
    Biochim Biophys Acta; 1991 Nov; 1080(3):231-6. PubMed ID: 1954231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Methods for Modeling Enzyme Kinetics.
    Yadav J; Korzekwa K; Nagar S
    Methods Mol Biol; 2021; 2342():147-168. PubMed ID: 34272694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Description of enzyme kinetics in reversed micelles. 1. Theory.
    Verhaert RM; Hilhorst R; Vermuë M; Schaafsma TJ; Veeger C
    Eur J Biochem; 1990 Jan; 187(1):59-72. PubMed ID: 2298210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.