These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 8373762)
1. Expression and characterization of a structural and functional domain of the mannitol-specific transport protein involved in the coupling of mannitol transport and phosphorylation in the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Robillard GT; Boer H; van Weeghel RP; Wolters G; Dijkstra A Biochemistry; 1993 Sep; 32(37):9553-62. PubMed ID: 8373762 [TBL] [Abstract][Full Text] [Related]
2. Relation between the oligomerization state and the transport and phosphorylation function of the Escherichia coli mannitol transport protein: interaction between mannitol-specific enzyme II monomers studied by complementation of inactive site-directed mutants. Boer H; ten Hoeve-Duurkens RH; Robillard GT Biochemistry; 1996 Oct; 35(39):12901-8. PubMed ID: 8841134 [TBL] [Abstract][Full Text] [Related]
3. Expression, purification, and kinetic characterization of the mannitol transport domain of the phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli. Kinetic evidence that the E. coli mannitol transport protein is a functional dimer. Boer H; ten Hoeve-Duurkens RH; Schuurman-Wolters GK; Dijkstra A; Robillard GT J Biol Chem; 1994 Jul; 269(27):17863-71. PubMed ID: 8027040 [TBL] [Abstract][Full Text] [Related]
4. Cytoplasmic phosphorylating domain of the mannitol-specific transport protein of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli: overexpression, purification, and functional complementation with the mannitol binding domain. van Weeghel RP; Meyer G; Pas HH; Keck W; Robillard GT Biochemistry; 1991 Oct; 30(39):9478-85. PubMed ID: 1909895 [TBL] [Abstract][Full Text] [Related]
5. Interdomain interactions between the hydrophilic domains of the mannitol transporter of Escherichia coli in the unphosphorylated and phosphorylated states. Meijberg W; Schuurman-Wolters GK; Robillard GT Biochemistry; 1996 Feb; 35(8):2759-66. PubMed ID: 8611583 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation site mutants of the mannitol transport protein enzyme IImtl of Escherichia coli: studies on the interaction between the mannitol translocating C-domain and the phosphorylation site on the energy-coupling B-domain. Boer H; ten Hoeve-Duurkens RH; Lolkema JS; Robillard GT Biochemistry; 1995 Mar; 34(10):3239-47. PubMed ID: 7880818 [TBL] [Abstract][Full Text] [Related]
7. Details of mannitol transport in Escherichia coli elucidated by site-specific mutagenesis and complementation of phosphorylation site mutants of the phosphoenolpyruvate-dependent mannitol-specific phosphotransferase system. van Weeghel RP; van der Hoek YY; Pas HH; Elferink M; Keck W; Robillard GT Biochemistry; 1991 Feb; 30(7):1768-73. PubMed ID: 1899620 [TBL] [Abstract][Full Text] [Related]
8. Phosphoenolpyruvate-dependent mannitol phosphotransferase system of Escherichia coli: overexpression, purification, and characterization of the enzymatically active C-terminal domain of enzyme IImtl equivalent to enzyme IIImtl. van Weeghel RP; Meyer GH; Keck W; Robillard GT Biochemistry; 1991 Feb; 30(7):1774-9. PubMed ID: 1993192 [TBL] [Abstract][Full Text] [Related]
9. S-phosphocysteine and phosphohistidine are intermediates in the phosphoenolpyruvate-dependent mannitol transport catalyzed by Escherichia coli EIIMtl. Pas HH; Robillard GT Biochemistry; 1988 Aug; 27(16):5835-9. PubMed ID: 3142516 [TBL] [Abstract][Full Text] [Related]
10. Solution structure of a post-transition state analog of the phosphotransfer reaction between the A and B cytoplasmic domains of the mannitol transporter IIMannitol of the Escherichia coli phosphotransferase system. Suh JY; Cai M; Williams DC; Clore GM J Biol Chem; 2006 Mar; 281(13):8939-49. PubMed ID: 16443929 [TBL] [Abstract][Full Text] [Related]
11. Domain complementation studies reveal residues critical for the activity of the mannitol permease from Escherichia coli. Vos EP; ter Horst R; Poolman B; Broos J Biochim Biophys Acta; 2009 Feb; 1788(2):581-6. PubMed ID: 19013424 [TBL] [Abstract][Full Text] [Related]
12. 31phospho-NMR demonstration of phosphocysteine as a catalytic intermediate on the Escherichia coli phosphotransferase system EIIMtl. Pas HH; Meyer GH; Kruizinga WH; Tamminga KS; van Weeghel RP; Robillard GT J Biol Chem; 1991 Apr; 266(11):6690-2. PubMed ID: 2016284 [TBL] [Abstract][Full Text] [Related]
13. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611 [TBL] [Abstract][Full Text] [Related]
14. The structure of the Escherichia coli phosphotransferase IIAmannitol reveals a novel fold with two conformations of the active site. van Montfort RL; Pijning T; Kalk KH; Hangyi I; Kouwijzer ML; Robillard GT; Dijkstra BW Structure; 1998 Mar; 6(3):377-88. PubMed ID: 9551558 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the protonation and hydrogen bonding state of the histidine residues in IIAmtl, a domain of the phosphoenolpyruvate-dependent mannitol-specific transport protein. Van Dijk AA; Scheek RM; Dijkstra K; Wolters GK; Robillard GT Biochemistry; 1992 Sep; 31(37):9063-72. PubMed ID: 1390693 [TBL] [Abstract][Full Text] [Related]
16. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:mannitol phosphotransferase system. Mueller EG; Khandekar SS; Knowles JR; Jacobson GR Biochemistry; 1990 Jul; 29(29):6892-6. PubMed ID: 2118803 [TBL] [Abstract][Full Text] [Related]
17. Mutations which uncouple transport and phosphorylation in the D-mannitol phosphotransferase system of Escherichia coli K-12 and Klebsiella pneumoniae 1033-5P14. Otte S; Scholle A; Turgut S; Lengeler JW J Bacteriol; 2003 Apr; 185(7):2267-76. PubMed ID: 12644498 [TBL] [Abstract][Full Text] [Related]
18. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048 [TBL] [Abstract][Full Text] [Related]
19. Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation. Elferink MG; Driessen AJ; Robillard GT J Bacteriol; 1990 Dec; 172(12):7119-25. PubMed ID: 2123863 [TBL] [Abstract][Full Text] [Related]
20. A conserved glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. Saraceni-Richards CA; Jacobson GR J Bacteriol; 1997 Feb; 179(4):1135-42. PubMed ID: 9023195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]