BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8374615)

  • 21. Constituents of the tapetosomes and elaioplasts in Brassica campestris tapetum and their degradation and retention during microsporogenesis.
    Ting JT; Wu SS; Ratnayake C; Huang AH
    Plant J; 1998 Dec; 16(5):541-51. PubMed ID: 10036772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting of oleosins to the oil bodies of oilseed rape (Brassica napus L.).
    Hills MJ; Watson MD; Murphy DJ
    Planta; 1993 Jan; 189(1):24-9. PubMed ID: 7763356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain.
    Simkin AJ; Qian T; Caillet V; Michoux F; Ben Amor M; Lin C; Tanksley S; McCarthy J
    J Plant Physiol; 2006 May; 163(7):691-708. PubMed ID: 16442665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular characterization of two Brassica napus genes related to oleosins which are highly expressed in the tapetum.
    Robert LS; Gerster J; Allard S; Cass L; Simmonds J
    Plant J; 1994 Dec; 6(6):927-33. PubMed ID: 7849761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus.
    Hernández-Pinzón I; Ross JH; Barnes KA; Damant AP; Murphy DJ
    Planta; 1999 Jun; 208(4):588-98. PubMed ID: 10420651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning of PCP1, a member of a family of pollen coat protein (PCP) genes from Brassica oleracea encoding novel cysteine-rich proteins involved in pollen-stigma interactions.
    Stanchev BS; Doughty J; Scutt CP; Dickinson H; Croy RR
    Plant J; 1996 Aug; 10(2):303-13. PubMed ID: 8771786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of 2S seed storage protein of Brassica campestris and its antigenic homology with seed proteins of other Cruciferae.
    Dasgupta S; Mandal RK
    Biochem Int; 1991 Oct; 25(3):409-17. PubMed ID: 1805785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of three anther-specific genes isolated from Chinese cabbage.
    Kim HU; Chung TY
    Plant Mol Biol; 1997 Jan; 33(1):193-8. PubMed ID: 9037172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cDNA clone encoding an IgE-binding protein from Brassica anther has significant sequence similarity to Ca(2+)-binding proteins.
    Toriyama K; Okada T; Watanabe M; Ide T; Ashida T; Xu H; Singh MB
    Plant Mol Biol; 1995 Dec; 29(6):1157-65. PubMed ID: 8616215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oleosin genes in maize kernels having diverse oil contents are constitutively expressed independent of oil contents. Size and shape of intracellular oil bodies are determined by the oleosins/oils ratio.
    Ting JT; Lee K; Ratnayake C; Platt KA; Balsamo RA; Huang AH
    Planta; 1996; 199(1):158-65. PubMed ID: 8680304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular cloning of a cDNA encoding a pollen extracellular protein as a potential source of a pollen allergen in Brassica rapa.
    Toriyama K; Hanaoka K; Okada T; Watanabe M
    FEBS Lett; 1998 Mar; 424(3):234-8. PubMed ID: 9539157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications.
    Bhatla SC; Kaushik V; Yadav MK
    Biotechnol Adv; 2010; 28(3):293-300. PubMed ID: 20067829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies.
    Chen JC; Lin RH; Huang HC; Tzen JT
    J Biochem; 1997 Oct; 122(4):819-24. PubMed ID: 9399587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A class of amphipathic proteins associated with lipid storage bodies in plants. Possible similarities with animal serum apolipoproteins.
    Murphy DJ; Keen JN; O'Sullivan JN; Au DM; Edwards EW; Jackson PJ; Cummins I; Gibbons T; Shaw CH; Ryan AJ
    Biochim Biophys Acta; 1991 Jan; 1088(1):86-94. PubMed ID: 1989697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium.
    Deleu M; Vaca-Medina G; Fabre JF; Roïz J; Valentin R; Mouloungui Z
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):125-32. PubMed ID: 20580539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of oleosin in land plants.
    Fang Y; Zhu RL; Mishler BD
    PLoS One; 2014; 9(8):e103806. PubMed ID: 25105766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of the major oil-body membrane protein in developing rapeseed (Brassica napus) embryos. Integration with storage-lipid and storage-protein synthesis and implications for the mechanism of oil-body formation.
    Murphy DJ; Cummins I; Kang AS
    Biochem J; 1989 Feb; 258(1):285-93. PubMed ID: 2930514
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and immunolocalization of a cytosolic calcium-binding protein from Brassica napus and Arabidopsis pollen.
    Rozwadowski K; Zhao R; Jackman L; Huebert T; Burkhart WE; Hemmingsen SM; Greenwood J; Rothstein SJ
    Plant Physiol; 1999 Jul; 120(3):787-98. PubMed ID: 10398714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene families from the Arabidopsis thaliana pollen coat proteome.
    Mayfield JA; Fiebig A; Johnstone SE; Preuss D
    Science; 2001 Jun; 292(5526):2482-5. PubMed ID: 11431566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant seed oil-bodies as carriers for foreign proteins.
    van Rooijen GJ; Moloney MM
    Biotechnology (N Y); 1995 Jan; 13(1):72-7. PubMed ID: 9634752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.