These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 8374743)
21. Lack of calbindin-D28k does not affect hearing level or survival of hair cells in acoustic trauma. Airaksinen L; Virkkala J; Aarnisalo A; Meyer M; Ylikoski J; Airaksinen MS ORL J Otorhinolaryngol Relat Spec; 2000; 62(1):9-12. PubMed ID: 10654311 [TBL] [Abstract][Full Text] [Related]
22. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. Kubota Y; Kawaguchi Y J Comp Neurol; 1993 Jun; 332(4):499-513. PubMed ID: 8349845 [TBL] [Abstract][Full Text] [Related]
23. Identification and quantification in single muscle fibers of four isoforms of parvalbumin in the iliofibularis muscle of Xenopus laevis. Simonides WS; van Hardeveld C Biochim Biophys Acta; 1989 Oct; 998(2):137-44. PubMed ID: 2790059 [TBL] [Abstract][Full Text] [Related]
24. Bioconcentration and Metabolism of Pyriproxyfen in Tadpoles of African Clawed Frogs, Xenopus laevis. Ose K; Miyamoto M; Fujisawa T; Katagi T J Agric Food Chem; 2017 Nov; 65(46):9980-9986. PubMed ID: 29084385 [TBL] [Abstract][Full Text] [Related]
25. Differential distribution of six calcium-binding proteins in the rat olfactory epithelium during postnatal development and adulthood. Bastianelli E; Polans AS; Hidaka H; Pochet R J Comp Neurol; 1995 Apr; 354(3):395-409. PubMed ID: 7541806 [TBL] [Abstract][Full Text] [Related]
26. Myosin VI and VIIa distribution among inner ear epithelia in diverse fishes. Coffin AB; Dabdoub A; Kelley MW; Popper AN Hear Res; 2007 Feb; 224(1-2):15-26. PubMed ID: 17204383 [TBL] [Abstract][Full Text] [Related]
27. Origins of inner ear sensory organs revealed by fate map and time-lapse analyses. Kil SH; Collazo A Dev Biol; 2001 May; 233(2):365-79. PubMed ID: 11336501 [TBL] [Abstract][Full Text] [Related]
28. Immunocytochemical localization of calcium-binding proteins, calbindin D28K-, calretinin-, and parvalbumin-containing neurons in the dog visual cortex. Yu SH; Lee JY; Jeon CJ Zoolog Sci; 2011 Sep; 28(9):694-702. PubMed ID: 21882959 [TBL] [Abstract][Full Text] [Related]
29. Differential expression of calbindin D28k, calretinin and parvalbumin in the cerebellum of pups of ethanol-treated female rats. Wierzba-Bobrowicz T; Lewandowska E; Stępień T; Szpak GM Folia Neuropathol; 2011; 49(1):47-55. PubMed ID: 21455843 [TBL] [Abstract][Full Text] [Related]
30. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Shin JB; Adams D; Paukert M; Siba M; Sidi S; Levin M; Gillespie PG; Gründer S Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12572-7. PubMed ID: 16116094 [TBL] [Abstract][Full Text] [Related]
31. Distribution of calcium binding proteins in sensory organs of the ear, nose and throat. Yamagishi M; Ishizuka Y; Fujiwara M; Nakamura H; Igarashi S; Nakano Y; Kuwano R Acta Otolaryngol Suppl; 1993; 506():85-9. PubMed ID: 8256606 [TBL] [Abstract][Full Text] [Related]
32. Coexistence of calcium-binding proteins in vagal and glossopharyngeal sensory neurons of the rat. Ichikawa H; Helke CJ Brain Res; 1997 Sep; 768(1-2):349-53. PubMed ID: 9369337 [TBL] [Abstract][Full Text] [Related]
33. Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. Goodyear R; Richardson G J Comp Neurol; 1992 Nov; 325(2):243-56. PubMed ID: 1281174 [TBL] [Abstract][Full Text] [Related]
34. Effects of chronic monocular enucleation on calcium binding proteins calbindin-D28k and parvalbumin in the lateral geniculate nucleus of adult rhesus monkeys. Gutierrez C; Cusick CG Brain Res; 1994 Jul; 651(1-2):300-10. PubMed ID: 7922579 [TBL] [Abstract][Full Text] [Related]
35. Neurochemical development of the hippocampal region in the fetal rhesus monkey, III: calbindin-D28K, calretinin and parvalbumin with special mention of cajal-retzius cells and the retrosplenial cortex. Berger B; Alvarez C J Comp Neurol; 1996 Mar; 366(4):674-99. PubMed ID: 8833116 [TBL] [Abstract][Full Text] [Related]
36. Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis. Hellmann B; Fritzsch B Brain Behav Evol; 1996; 47(4):185-94. PubMed ID: 9156781 [TBL] [Abstract][Full Text] [Related]
37. Eye factors and lens-forming transformations of outer cornea in Xenopus laevis larvae. Bosco L; Filoni S; Cioni C; Bernardini S J Exp Zool; 1986 Dec; 240(3):401-7. PubMed ID: 3794628 [TBL] [Abstract][Full Text] [Related]
38. Histochemical Analyses of Biliary Development During Metamorphosis of Xenopus laevis Tadpoles. Ueno T; Ishihara A; Yagi S; Koike T; Yamauchi K; Shiojiri N Zoolog Sci; 2015 Jan; 32(1):88-96. PubMed ID: 25660701 [TBL] [Abstract][Full Text] [Related]
39. Stimulation of plasma membrane Ca2+ pump by calbindin-D28k and calmodulin is additive in EGTA-free solutions. Timmermans JA; Bindels RJ; Van Os CH J Nutr; 1995 Jul; 125(7 Suppl):1981S-1986S. PubMed ID: 7602380 [TBL] [Abstract][Full Text] [Related]
40. The nervus terminalis in larval and adult Xenopus laevis. Hofmann MH; Meyer DL Brain Res; 1989 Sep; 498(1):167-9. PubMed ID: 2790468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]