BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 8374747)

  • 1. Combined scopolamine and morphine treatment of traumatic brain injury in the rat.
    Lyeth BG; Liu S; Hamm RJ
    Brain Res; 1993 Jul; 617(1):69-75. PubMed ID: 8374747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Use of Scopolamine, Morphine, Atropine, and similar drugs by Hypodermic Injection before Inhalation Anæsthesia.
    Buxton DW
    Proc R Soc Med; 1911; 4(Sect Anaesth):43-56. PubMed ID: 19975422
    [No Abstract]   [Full Text] [Related]  

  • 3. Morphine-Scopolamine Narco-Anæsthesia in Nasal Operations.
    Neville WS
    Proc R Soc Med; 1929 Sep; 22(11):1431-4. PubMed ID: 19987159
    [No Abstract]   [Full Text] [Related]  

  • 4. REPORT OF THE COMMITTEE APPOINTED BY THE SECTION OF OBSTETRICS AND GYNÆCOLOGY TO INVESTIGATE THE EFFECTS OF SCOPOLAMINE-MORPHINE NARCOSIS, "TWILIGHT SLEEP," IN CHILDBIRTH.
    Proc R Soc Med; 1918; 11(Obstet Gynaecol Sect):1-5. PubMed ID: 19980184
    [No Abstract]   [Full Text] [Related]  

  • 5. The cytochrome P450 4 (CYP4) family.
    Simpson AE
    Gen Pharmacol; 1997 Mar; 28(3):351-9. PubMed ID: 9068972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Mechanistic Approaches to the Treatment of Traumatic Brain Injury: A Review.
    Lynch DG; Narayan RK; Li C
    J Clin Med; 2023 Mar; 12(6):. PubMed ID: 36983181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Sex and Muscarinic Activity on Memory Retrieval in Mouse Model of Traumatic Brain Injury.
    Rashid H; Ahmed T
    Brain Sci; 2023 Jan; 13(1):. PubMed ID: 36672089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous Opioid Dynorphin Is a Potential Link between Traumatic Brain Injury, Chronic Pain, and Substance Use Disorder.
    Best KM; Mojena MM; Barr GA; Schmidt HD; Cohen AS
    J Neurotrauma; 2022 Jan; 39(1-2):1-19. PubMed ID: 34751584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Non-coding RNA in CNS Injuries: A New Target for Therapeutic Intervention.
    Zhang L; Wang H
    Mol Ther Nucleic Acids; 2019 Sep; 17():754-766. PubMed ID: 31437654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (-)-Phenserine Ameliorates Contusion Volume, Neuroinflammation, and Behavioral Impairments Induced by Traumatic Brain Injury in Mice.
    Hsueh SC; Lecca D; Greig NH; Wang JY; Selman W; Hoffer BJ; Miller JP; Chiang YH
    Cell Transplant; 2019; 28(9-10):1183-1196. PubMed ID: 31177840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In search of antiepileptogenic treatments for post-traumatic epilepsy.
    Saletti PG; Ali I; Casillas-Espinosa PM; Semple BD; Lisgaras CP; Moshé SL; Galanopoulou AS
    Neurobiol Dis; 2019 Mar; 123():86-99. PubMed ID: 29936231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-Injury Administration of Galantamine Reduces Traumatic Brain Injury Pathology and Improves Outcome.
    Zhao J; Hylin MJ; Kobori N; Hood KN; Moore AN; Dash PK
    J Neurotrauma; 2018 Jan; 35(2):362-374. PubMed ID: 29088998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repositioning drugs for traumatic brain injury - N-acetyl cysteine and Phenserine.
    Hoffer BJ; Pick CG; Hoffer ME; Becker RE; Chiang YH; Greig NH
    J Biomed Sci; 2017 Sep; 24(1):71. PubMed ID: 28886718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury.
    Zhang L; Wang H
    Mol Neurobiol; 2018 Feb; 55(2):1773-1785. PubMed ID: 28224478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural Compounds as a Therapeutic Intervention following Traumatic Brain Injury: The Role of Phytochemicals.
    Scheff SW; Ansari MA
    J Neurotrauma; 2017 Apr; 34(8):1491-1510. PubMed ID: 27846772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms.
    Tweedie D; Fukui K; Li Y; Yu QS; Barak S; Tamargo IA; Rubovitch V; Holloway HW; Lehrmann E; Wood WH; Zhang Y; Becker KG; Perez E; Van Praag H; Luo Y; Hoffer BJ; Becker RE; Pick CG; Greig NH
    PLoS One; 2016; 11(6):e0156493. PubMed ID: 27254111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better?
    Kline AE; Leary JB; Radabaugh HL; Cheng JP; Bondi CO
    Prog Neurobiol; 2016 Jul; 142():45-67. PubMed ID: 27166858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in Cholinergic Pathways and Therapeutic Strategies Targeting Cholinergic System after Traumatic Brain Injury.
    Shin SS; Dixon CE
    J Neurotrauma; 2015 Oct; 32(19):1429-40. PubMed ID: 25646580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using anesthetics and analgesics in experimental traumatic brain injury.
    Rowe RK; Harrison JL; Thomas TC; Pauly JR; Adelson PD; Lifshitz J
    Lab Anim (NY); 2013 Aug; 42(8):286-91. PubMed ID: 23877609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAAG peptidase inhibitor improves motor function and reduces cognitive dysfunction in a model of TBI with secondary hypoxia.
    Gurkoff GG; Feng JF; Van KC; Izadi A; Ghiasvand R; Shahlaie K; Song M; Lowe DA; Zhou J; Lyeth BG
    Brain Res; 2013 Jun; 1515():98-107. PubMed ID: 23562458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.