These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 8375390)
1. Acylation of porcine pancreatic phospholipase A2 influences penetration and substrate head-group binding, depending on the position of the acylated lysine in the enzyme molecule. Lugtigheid RB; Nicolaes GA; Veldhuizen EJ; Slotboom AJ; Verheij HM; De Haas GH Eur J Biochem; 1993 Sep; 216(2):519-25. PubMed ID: 8375390 [TBL] [Abstract][Full Text] [Related]
2. Arginine 53 is involved in head-group specificity of the active site of porcine pancreatic phospholipase A2. Lugtigheid RB; Otten-Kuipers MA; Verheij HM; De Haas GH Eur J Biochem; 1993 Apr; 213(1):517-22. PubMed ID: 8477724 [TBL] [Abstract][Full Text] [Related]
3. An extended binding pocket determines the polar head group specificity of porcine pancreatic phospholipase A2. Beiboer SH; Franken PA; Cox RC; Verheij HM Eur J Biochem; 1995 Aug; 231(3):747-53. PubMed ID: 7649176 [TBL] [Abstract][Full Text] [Related]
4. Structural importance of the amino-terminal residue of pancreatic phospholipase A2. van Scharrenburg GJ; Jansen EH; Egmond MR; de Haas GH; Slotboom AJ Biochemistry; 1984 Dec; 23(25):6285-94. PubMed ID: 6441599 [TBL] [Abstract][Full Text] [Related]
5. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 2. Transformation of soluble phospholipase A2 into a highly penetrating "membrane-bound" form. Van der Wiele FC; Atsma W; Roelofsen B; van Linde M; Van Binsbergen J; Radvanyi F; Raykova D; Slotboom AJ; De Haas GH Biochemistry; 1988 Mar; 27(5):1688-94. PubMed ID: 3130102 [TBL] [Abstract][Full Text] [Related]
6. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 1. Preparation and properties. Van der Wiele FC; Atsma W; Dijkman R; Schreurs AM; Slotboom AJ; De Haas GH Biochemistry; 1988 Mar; 27(5):1683-8. PubMed ID: 3130101 [TBL] [Abstract][Full Text] [Related]
7. Phospholipase A2 engineering. X-ray structural and functional evidence for the interaction of lysine-56 with substrates. Noel JP; Bingman CA; Deng TL; Dupureur CM; Hamilton KJ; Jiang RT; Kwak JG; Sekharudu C; Sundaralingam M; Tsai MD Biochemistry; 1991 Dec; 30(51):11801-11. PubMed ID: 1751497 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of a mutant human platelet phospholipase A2 expressed in Escherichia coli. Cleavage of a fusion protein with cyanogen bromide. Franken PA; Van den Berg L; Huang J; Gunyuzlu P; Lugtigheid RB; Verheij HM; De Haas GH Eur J Biochem; 1992 Jan; 203(1-2):89-98. PubMed ID: 1730245 [TBL] [Abstract][Full Text] [Related]
9. Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A2. Lee BI; Yoon ET; Cho W Biochemistry; 1996 Apr; 35(13):4231-40. PubMed ID: 8672459 [TBL] [Abstract][Full Text] [Related]
10. Influence of size and polarity of residue 31 in porcine pancreatic phospholipase A2 on catalytic properties. Kuipers OP; Kerver J; van Meersbergen J; Vis R; Dijkman R; Verheij HM; de Haas GH Protein Eng; 1990 Jul; 3(7):599-603. PubMed ID: 2217133 [TBL] [Abstract][Full Text] [Related]
12. Activities of native and tyrosine-69 mutant phospholipases A2 on phospholipid analogues. A reevaluation of the minimal substrate requirements. Kuipers OP; Dekker N; Verheij HM; de Haas GH Biochemistry; 1990 Jun; 29(25):6094-102. PubMed ID: 2116905 [TBL] [Abstract][Full Text] [Related]
13. The chemical basis for interfacial activation of monomeric phospholipases A2. Autocatalytic derivatization of the enzyme by acyl transfer from substrate. Cho W; Tomasselli AG; Heinrikson RL; Kézdy FJ J Biol Chem; 1988 Aug; 263(23):11237-41. PubMed ID: 3403524 [TBL] [Abstract][Full Text] [Related]
14. Introduction of a C-terminal aromatic sequence from snake venom phospholipases A2 into the porcine pancreatic isozyme dramatically changes the interfacial kinetics. Janssen MJ; Burghout PJ; Verheij HM; Slotboom AJ; Egmond MR Eur J Biochem; 1999 Aug; 263(3):782-8. PubMed ID: 10469142 [TBL] [Abstract][Full Text] [Related]
15. The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [lysine49]phospholipase A2 from Agkistrodon piscivorus piscivorus' venom. van den Bergh CJ; Slotboom AJ; Verheij HM; de Haas GH Eur J Biochem; 1988 Sep; 176(2):353-7. PubMed ID: 3046944 [TBL] [Abstract][Full Text] [Related]
16. Modification of the head-group selectivity of porcine pancreatic phospholipase A2 by protein engineering. Bhat MK; Pickersgill RW; Perry BN; Brown RA; Jones ST; Mueller-Harvey I; Sumner IG; Goodenough PW Biochemistry; 1993 Nov; 32(45):12203-8. PubMed ID: 8105891 [TBL] [Abstract][Full Text] [Related]
17. Differential interfacial and substrate binding modes of mammalian pancreatic phospholipases A2: a comparison among human, bovine, and porcine enzymes. Snitko Y; Han SK; Lee BI; Cho W Biochemistry; 1999 Jun; 38(24):7803-10. PubMed ID: 10387020 [TBL] [Abstract][Full Text] [Related]
18. Effects of specific fatty acid acylation of phospholipase A2 on its interfacial binding and catalysis. Shen Z; Wu SK; Cho W Biochemistry; 1994 Sep; 33(38):11598-607. PubMed ID: 7918373 [TBL] [Abstract][Full Text] [Related]
19. Amino acid substitutions of the NH2-terminal Ala1 of porcine pancreatic phospholipase A2: a monolayer study. Pattus F; Slotboom AJ; de Haas GH Biochemistry; 1979 Jun; 18(13):2703-7. PubMed ID: 573136 [TBL] [Abstract][Full Text] [Related]
20. Binding of porcine pancreatic phospholipase A2 to various micellar substrate analogues. Involvement of histidine-48 and aspartic acid-49 in the binding process. Donné-Op den Kelder GM; Hille JD; Dijkman R; de Haas GH; Egmond MR Biochemistry; 1981 Jul; 20(14):4074-8. PubMed ID: 7284311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]