BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 8375870)

  • 1. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of electrode area, contact impedance and boundary shape on EIT images.
    Boyle A; Adler A
    Physiol Meas; 2011 Jul; 32(7):745-54. PubMed ID: 21646710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model.
    Yang F; Patterson RP
    Physiol Meas; 2007 Jul; 28(7):S153-61. PubMed ID: 17664633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging.
    Woo EJ; Seo JK
    Physiol Meas; 2008 Oct; 29(10):R1-26. PubMed ID: 18799834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental justification for using 3D conductivity reconstructions in electrical impedance tomography.
    Halter RJ; Hartov A; Paulsen KD
    Physiol Meas; 2007 Jul; 28(7):S115-27. PubMed ID: 17664629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive mesh refinement techniques for 3-D skin electrode modeling.
    Sawicki B; Okoniewski M
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):528-33. PubMed ID: 19789105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model to identify electrode influence on current distribution in the skin.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Moatamedi M
    Artif Organs; 2008 Aug; 32(8):639-43. PubMed ID: 18782136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
    Adler A; Arnold JH; Bayford R; Borsic A; Brown B; Dixon P; Faes TJ; Frerichs I; Gagnon H; Gärber Y; Grychtol B; Hahn G; Lionheart WR; Malik A; Patterson RP; Stocks J; Tizzard A; Weiler N; Wolf GK
    Physiol Meas; 2009 Jun; 30(6):S35-55. PubMed ID: 19491438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging of conductivity changes and electrode movement in EIT.
    Soleimani M; Gómez-Laberge C; Adler A
    Physiol Meas; 2006 May; 27(5):S103-13. PubMed ID: 16636402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electrode geometry and cell location on single-cell impedance measurement.
    Wang JW; Wang MH; Jang LS
    Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Simulation study of line electrode for electrical impedance tomography].
    Wang Y; Sha H; Ren C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):986-9. PubMed ID: 18027681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A data acquisition system for induced current electrical impedance tomography].
    Xiang H; Dong X; Qin M; You F; Shi X; Fu F; Liu R; Ma J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):819-23. PubMed ID: 16156281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An iterative Newton-Raphson method to solve the inverse admittivity problem.
    Edic PM; Isaacson D; Saulnier GJ; Jain H; Newell JC
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):899-908. PubMed ID: 9644899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the forward solver for the complete electrode model in EIT using algebraic multigrid.
    Soleimani M; Powell CE; Polydorides N
    IEEE Trans Med Imaging; 2005 May; 24(5):577-83. PubMed ID: 15889545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.