BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8376366)

  • 1. High affinity sodium-dependent nucleobase transport in cultured renal epithelial cells (LLC-PK1).
    Griffith DA; Jarvis SM
    J Biol Chem; 1993 Sep; 268(27):20085-90. PubMed ID: 8376366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of nucleobase transport in rabbit choroid plexus. Evidence for a Na(+)-dependent nucleobase transporter with broad substrate selectivity.
    Washington CB; Giacomini KM
    J Biol Chem; 1995 Sep; 270(39):22816-9. PubMed ID: 7559412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a sodium-dependent concentrative nucleobase-transport system in guinea-pig kidney cortex brush-border membrane vesicles.
    Griffith DA; Jarvis SM
    Biochem J; 1994 Nov; 303 ( Pt 3)(Pt 3):901-5. PubMed ID: 7980460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxanthine enters human vascular endothelial cells (ECV 304) via the nitrobenzylthioinosine-insensitive equilibrative nucleoside transporter.
    Osses N; Pearson JD; Yudilevich DL; Jarvis SM
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):843-8. PubMed ID: 8760371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of nucleoside and nucleobase transport and nitrobenzylthioinosine binding by dilazep and hexobendine.
    Plagemann PG; Kraupp M
    Biochem Pharmacol; 1986 Aug; 35(15):2559-67. PubMed ID: 3741459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleobase transport in opossum kidney epithelial cells and Xenopus laevis oocytes: the characterisation, structure-activity relationship of uracil analogues and oocyte expression studies of sodium-dependent and -independent hypoxanthine uptake.
    Shayeghi M; Akerman R; Jarvis SM
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):109-18. PubMed ID: 9889340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside and nucleobase transporters of primary human cardiac microvascular endothelial cells: characterization of a novel nucleobase transporter.
    Bone DB; Hammond JR
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3325-32. PubMed ID: 17921321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoside transport in cultured LLC-PK1 epithelia.
    Griffith DA; Doherty AJ; Jarvis SM
    Biochim Biophys Acta; 1992 May; 1106(2):303-10. PubMed ID: 1596509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na(+)-dependent and -independent uridine uptake in an established renal epithelial cell line, OK, from the opossum kidney.
    Doherty AJ; Jarvis SM
    Biochim Biophys Acta; 1993 Apr; 1147(2):214-22. PubMed ID: 8476915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for sodium-dependent hypoxanthine uptake in isolated guinea pig ventricular myocytes: stimulation by extracellular Ni2+.
    Haddock PS
    Cardiovasc Res; 1995 Jul; 30(1):130-7. PubMed ID: 7553715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acyclovir transport into human erythrocytes.
    Mahony WB; Domin BA; McConnell RT; Zimmerman TP
    J Biol Chem; 1988 Jul; 263(19):9285-91. PubMed ID: 3379070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of novel Na+-dependent nucleobase transport systems at the blood-testis barrier.
    Kato R; Maeda T; Akaike T; Tamai I
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E968-75. PubMed ID: 16368787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleobase transport in cultured renal epithelial cells.
    Akerman R; Jarvis SM
    Biochem Soc Trans; 1995 Feb; 23(1):29S. PubMed ID: 7758739
    [No Abstract]   [Full Text] [Related]  

  • 14. Purine nucleobase transport in human erythrocytes. Reinvestigation with a novel "inhibitor-stop" assay.
    Domin BA; Mahony WB; Zimmerman TP
    J Biol Chem; 1988 Jul; 263(19):9276-84. PubMed ID: 3379069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides.
    Dagnino L; Paterson AR
    Cancer Res; 1990 Oct; 50(20):6549-53. PubMed ID: 1698538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetics of hypoxanthine transport across the perfused choroid plexus of the sheep.
    Redzic ZB; Gasic JM; Segal MB; Markovic ID; Isakovic AJ; Rakic MLj; Thomas SA; Rakic LM
    Brain Res; 2002 Jan; 925(2):169-75. PubMed ID: 11792365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purine and pyrimidine transport by cultured Novikoff cells. Specificities and mechanism of transport and relationship to phosphoribosylation.
    Zylka JM; Plagemann PG
    J Biol Chem; 1975 Aug; 250(15):5756-67. PubMed ID: 168203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a novel high-affinity purine nucleobase transport function in mutant mammalian T lymphoblasts.
    Aronow B; Toll D; Patrick J; Hollingsworth P; McCartan K; Ullman B
    Mol Cell Biol; 1986 Aug; 6(8):2957-62. PubMed ID: 3491294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of nucleobase transport in LLC-PK1 renal epithelia by protein kinase C.
    Griffith DA; Jarvis SM
    Biochim Biophys Acta; 1996 Oct; 1284(2):213-20. PubMed ID: 8914586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of 5-fluorouracil and uracil into human erythrocytes.
    Domin BA; Mahony WB; Zimmerman TP
    Biochem Pharmacol; 1993 Aug; 46(3):503-10. PubMed ID: 8347174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.