BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 8376626)

  • 1. Cloning and characteristics of fish glial fibrillary acidic protein: implications for optic nerve regeneration.
    Cohen I; Shani Y; Schwartz M
    J Comp Neurol; 1993 Aug; 334(3):431-43. PubMed ID: 8376626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial fibrillary acidic protein in the fish optic nerve.
    Blaugrund E; Cohen I; Shani Y; Schwartz M
    Glia; 1991; 4(4):393-9. PubMed ID: 1718861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vimentin immunoreactive glial cells in the fish optic nerve: implications for regeneration.
    Cohen I; Sivron T; Lavie V; Blaugrund E; Schwartz M
    Glia; 1994 Jan; 10(1):16-29. PubMed ID: 8300190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats.
    Blaugrund E; Lavie V; Cohen I; Solomon A; Schreyer DJ; Schwartz M
    J Comp Neurol; 1993 Apr; 330(1):105-12. PubMed ID: 8468398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of fish glial cells in culture: possible implications as to their lineage.
    Sivron T; Jeserich G; Nona S; Schwartz M
    Glia; 1992; 6(1):52-66. PubMed ID: 1387387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of glial fibrillary acidic protein (GFAP) in goldfish optic nerve following injury.
    Stafford CA; Shehab SA; Nona SN; Cronly-Dillon JR
    Glia; 1990; 3(1):33-42. PubMed ID: 2138134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of growth inhibitors in fish optic nerve myelin: postinjury changes.
    Sivron T; Schwab ME; Schwartz M
    J Comp Neurol; 1994 May; 343(2):237-46. PubMed ID: 8027441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activating transcription factor 3 and reactive astrocytes following optic nerve injury in zebrafish.
    Neve LD; Savage AA; Koke JR; García DM
    Comp Biochem Physiol C Toxicol Pharmacol; 2012 Mar; 155(2):213-8. PubMed ID: 21889613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies.
    Dahl D; Crosby CJ; Sethi JS; Bignami A
    J Comp Neurol; 1985 Sep; 239(1):75-88. PubMed ID: 3900154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein.
    Wang X; Messing A; David S
    Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engrafted chicken neural tube-derived stem cells support the innate propensity for axonal regeneration within the rat optic nerve.
    Charalambous P; Hurst LA; Thanos S
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3513-24. PubMed ID: 18408190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astrocytes as gate-keepers in optic nerve regeneration--a mini-review.
    García DM; Koke JR
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):135-8. PubMed ID: 18930160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transected axons of adult hypothalamo-neurohypophysial neurons regenerate along tanycytic processes.
    Chauvet N; Parmentier ML; Alonso G
    J Neurosci Res; 1995 May; 41(1):129-44. PubMed ID: 7674374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gliosis during optic fiber regeneration in the goldfish: an immunohistochemical study.
    Levine RL
    J Comp Neurol; 1991 Oct; 312(4):549-60. PubMed ID: 1761741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytokines modulate the inflammatory response and change permissiveness to neuronal adhesion in injured mammalian central nervous system.
    Lotan M; Solomon A; Ben-Bassat S; Schwartz M
    Exp Neurol; 1994 Apr; 126(2):284-90. PubMed ID: 7925826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial response to axonal injury: in vitro manifestation and implication for regeneration.
    Sivron T; Cohen A; Duvdevani R; Jeserich G; Schwartz M
    Glia; 1990; 3(4):267-76. PubMed ID: 2144506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behaviour of macroglial cells, as identified by their intermediate filament complement, during optic nerve regeneration of Xenopus tadpole.
    Rungger-Brändle E; Alliod C; Fouquet B; Messerli MM
    Glia; 1995 Apr; 13(4):255-71. PubMed ID: 7542224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration.
    Sugitani K; Matsukawa T; Koriyama Y; Shintani T; Nakamura T; Noda M; Kato S
    Neuroscience; 2006 Nov; 142(4):1081-92. PubMed ID: 16997488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of phospho-growth-associated protein 43 (phospho-GAP43) in the zebrafish retina after optic nerve injury: a long-term observation.
    Kaneda M; Nagashima M; Nunome T; Muramatsu T; Yamada Y; Kubo M; Muramoto K; Matsukawa T; Koriyama Y; Sugitani K; Vachkov IH; Mawatari K; Kato S
    Neurosci Res; 2008 Jul; 61(3):281-8. PubMed ID: 18485507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells.
    Feinstein DL; Weinmaster GA; Milner RJ
    J Neurosci Res; 1992 May; 32(1):1-14. PubMed ID: 1629938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.