BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 8377025)

  • 1. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building.
    Koymans LM; Vermeulen NP; Baarslag A; Donné-Op den Kelder GM
    J Comput Aided Mol Des; 1993 Jun; 7(3):281-9. PubMed ID: 8377025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding.
    Modi S; Paine MJ; Sutcliffe MJ; Lian LY; Primrose WU; Wolf CR; Roberts GC
    Biochemistry; 1996 Apr; 35(14):4540-50. PubMed ID: 8605204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structures of P450 101, P450 102, and P450 108.
    de Groot MJ; Vermeulen NP; Kramer JD; van Acker FA; Donné-Op den Kelder GM
    Chem Res Toxicol; 1996; 9(7):1079-91. PubMed ID: 8902262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of molecular models of the cytochrome P450 Streptomyces griseolus enzymes P450SU1 and P450SU2.
    Braatz JA; Bass MB; Ornstein RL
    J Comput Aided Mol Des; 1994 Oct; 8(5):607-22. PubMed ID: 7876903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predictive model for substrates of cytochrome P450-debrisoquine (2D6).
    Koymans L; Vermeulen NP; van Acker SA; te Koppele JM; Heykants JJ; Lavrijsen K; Meuldermans W; Donné-Op den Kelder GM
    Chem Res Toxicol; 1992; 5(2):211-9. PubMed ID: 1379482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A refined substrate model for human cytochrome P450 2D6.
    de Groot MJ; Bijloo GJ; Martens BJ; van Acker FA; Vermeulen NP
    Chem Res Toxicol; 1997 Jan; 10(1):41-8. PubMed ID: 9074801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predicted three-dimensional structure of human cytochrome P450: implications for substrate specificity.
    Zvelebil MJ; Wolf CR; Sternberg MJ
    Protein Eng; 1991 Feb; 4(3):271-82. PubMed ID: 1857713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity in the oxidation of substrates by cytochrome P450 2D6: lack of an obligatory role of aspartate 301-substrate electrostatic bonding.
    Guengerich FP; Miller GP; Hanna IH; Martin MV; Léger S; Black C; Chauret N; Silva JM; Trimble LA; Yergey JA; Nicoll-Griffith DA
    Biochemistry; 2002 Sep; 41(36):11025-34. PubMed ID: 12206675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ.
    Lozano JJ; López-de-Briñas E; Centeno NB; Guigó R; Sanz F
    J Comput Aided Mol Des; 1997 Jul; 11(4):395-408. PubMed ID: 9334905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism.
    Lewis DF; Eddershaw PJ; Goldfarb PS; Tarbit MH
    Xenobiotica; 1997 Apr; 27(4):319-39. PubMed ID: 9149373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6.
    Ellis SW; Hayhurst GP; Smith G; Lightfoot T; Wong MM; Simula AP; Ackland MJ; Sternberg MJ; Lennard MS; Tucker GT
    J Biol Chem; 1995 Dec; 270(49):29055-8. PubMed ID: 7493924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N,alpha-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6.
    Grace JM; Kinter MT; Macdonald TL
    Chem Res Toxicol; 1994; 7(3):286-90. PubMed ID: 8075358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active-site topologies of human CYP2D6 and its aspartate-301 --> glutamate, asparagine, and glycine mutants.
    Mackman R; Tschirret-Guth RA; Smith G; Hayhurst GP; Ellis SW; Lennard MS; Tucker GT; Wolf CR; Ortiz de Montellano PR
    Arch Biochem Biophys; 1996 Jul; 331(1):134-40. PubMed ID: 8660692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.
    Ellis SW; Rowland K; Ackland MJ; Rekka E; Simula AP; Lennard MS; Wolf CR; Tucker GT
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):647-54. PubMed ID: 8687412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why is quinidine an inhibitor of cytochrome P450 2D6? The role of key active-site residues in quinidine binding.
    McLaughlin LA; Paine MJ; Kemp CA; Maréchal JD; Flanagan JU; Ward CJ; Sutcliffe MJ; Roberts GC; Wolf CR
    J Biol Chem; 2005 Nov; 280(46):38617-24. PubMed ID: 16162505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of cytochrome P450 3A4.
    Szklarz GD; Halpert JR
    J Comput Aided Mol Des; 1997 May; 11(3):265-72. PubMed ID: 9263853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4.
    De Rienzo F; Fanelli F; Menziani MC; De Benedetti PG
    J Comput Aided Mol Des; 2000 Jan; 14(1):93-116. PubMed ID: 10702928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of P450 3A4 SRS-2 residues on cooperativity and/or regioselectivity of aflatoxin B(1) oxidation.
    Xue L; Wang HF; Wang Q; Szklarz GD; Domanski TL; Halpert JR; Correia MA
    Chem Res Toxicol; 2001 May; 14(5):483-91. PubMed ID: 11368545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b(5) enzymes.
    Shimada T; Mernaugh RL; Guengerich FP
    Arch Biochem Biophys; 2005 Mar; 435(1):207-16. PubMed ID: 15680923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6.
    Kirton SB; Kemp CA; Tomkinson NP; St-Gallay S; Sutcliffe MJ
    Proteins; 2002 Nov; 49(2):216-31. PubMed ID: 12211002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.