These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8377044)

  • 41. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats.
    Jiang SD; Jiang LS; Dai LY
    Osteoporos Int; 2006 Oct; 17(10):1552-61. PubMed ID: 16874443
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats.
    Jing D; Cai J; Wu Y; Shen G; Li F; Xu Q; Xie K; Tang C; Liu J; Guo W; Wu X; Jiang M; Luo E
    J Bone Miner Res; 2014 Oct; 29(10):2250-61. PubMed ID: 24753111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [The effect of measured hypoxia on the development of situational osteopenia].
    Berezovs'kyĭ VIa; Litovka IH; Chaka OH
    Fiziol Zh (1994); 2000; 46(1):10-6. PubMed ID: 10758825
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis.
    Lill CA; Hesseln J; Schlegel U; Eckhardt C; Goldhahn J; Schneider E
    J Orthop Res; 2003 Sep; 21(5):836-42. PubMed ID: 12919871
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Low-level chronic exposure to cadmium enhances the risk of long bone fractures: a study on a female rat model of human lifetime exposure.
    Brzóska MM
    J Appl Toxicol; 2012 Jan; 32(1):34-44. PubMed ID: 21264883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of fibular fixation in combined fractures of the tibia and fibula: a biomechanical investigation.
    Weber TG; Harrington RM; Henley MB; Tencer AF
    J Orthop Trauma; 1997 Apr; 11(3):206-11. PubMed ID: 9181505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.
    Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH
    J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models.
    Prodinger PM; Foehr P; Bürklein D; Bissinger O; Pilge H; Kreutzer K; von Eisenhart-Rothe R; Tischer T
    Eur J Med Res; 2018 Feb; 23(1):8. PubMed ID: 29444703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Head injury-associated bone fractures induce bacterial translocation: an experimental study.
    Oztuna V; Ersöz G; Ayan I; Eskandari MM; Uğuz K; Kuyurtar F
    J Orthop Trauma; 2004 Feb; 18(2):92-5. PubMed ID: 14743028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Standardization of tibial fractures in the rat.
    Bak B; Jensen KS
    Bone; 1992; 13(4):289-95. PubMed ID: 1389568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Solid mechanics and strength of bone in young dogs.
    Jonsson U; Netz P; Strömberg L
    Acta Orthop Scand; 1984 Aug; 55(4):446-51. PubMed ID: 6475512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bone loss following tibial osteotomy: a model for evaluating post-traumatic osteopenia.
    Karlsson MK; Josefsson PO; Nordkvist A; Akesson K; Seeman E; Obrant KJ
    Osteoporos Int; 2000; 11(3):261-4. PubMed ID: 10824243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ipsilateral fractures of the femur and tibia: treatment with retrograde femoral nailing and unreamed tibial nailing.
    Gregory P; DiCicco J; Karpik K; DiPasquale T; Herscovici D; Sanders R
    J Orthop Trauma; 1996; 10(5):309-16. PubMed ID: 8814571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Contribution to the pathogenesis and treatment of pseudarthrosis of the long medullated bones].
    Schlosser V
    Hefte Unfallheilkd; 1968; 94():57-60. PubMed ID: 4880582
    [No Abstract]   [Full Text] [Related]  

  • 56. Post-traumatic knee osteoarthritis treated by osteotomy only.
    Lustig S; Khiami F; Boyer P; Catonne Y; Deschamps G; Massin P;
    Orthop Traumatol Surg Res; 2010 Dec; 96(8):856-60. PubMed ID: 21115418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Healing of segmental and simple fractures in rats.
    Utvåg SE; Grundnes O; Reikerås O
    Acta Orthop Scand; 1994 Oct; 65(5):559-63. PubMed ID: 7801763
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incidence and risk factors of knee injuries associated with ipsilateral femoral shaft fractures: A multicentre retrospective analysis of 429 femoral shaft injuries.
    Byun SE; Shon HC; Park JH; Oh HK; Cho YH; Kim JW; Sim JA
    Injury; 2018 Aug; 49(8):1602-1606. PubMed ID: 29887503
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Diaphyseal fractures of the lower extremity].
    Boscher Y; Fouque PA; Le Nay P; Pidhorz L
    Int Orthop; 1987; 11(4):353-60. PubMed ID: 3440655
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth disturbances following fractures of the femur and tibia in children.
    Parrini L; Paleari M; Biggi F
    Ital J Orthop Traumatol; 1985 Mar; 11(1):139-45. PubMed ID: 4019160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.