These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8377513)

  • 1. A general-purpose system for long-term recording from a microelectrode array coupled to excitable cells.
    Martinoia S; Bove M; Carlini G; Ciccarelli C; Grattarola M; Storment C; Kovacs G
    J Neurosci Methods; 1993 Jun; 48(1-2):115-21. PubMed ID: 8377513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction.
    Pancrazio JJ; Bey PP; Loloee A; Manne S; Chao HC; Howard LL; Gosney WM; Borkholder DA; Kovacs GT; Manos P; Cuttino DS; Stenger DA
    Biosens Bioelectron; 1998 Oct; 13(9):971-9. PubMed ID: 9839386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMOS microelectrode array for the monitoring of electrogenic cells.
    Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H
    Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low resting potentials in single isolated heart cells due to membrane damage by the recording microelectrode.
    Pelzer D; Trube G; Piper HM
    Pflugers Arch; 1984 Feb; 400(2):197-9. PubMed ID: 6718227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast microelectrode headstage for voltage clamp.
    Sachs F; Specht P
    Med Biol Eng Comput; 1981 May; 19(3):316-20. PubMed ID: 7300470
    [No Abstract]   [Full Text] [Related]  

  • 6. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 7. A compact multichannel system for acquisition and processing of neural signals.
    Borghi T; Bonfanti A; Zambra G; Gusmeroli R; Spinelli AS; Baranauskas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():441-4. PubMed ID: 18001984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A miniature microelectrode array to monitor the bioelectric activity of cultured cells.
    Thomas CA; Springer PA; Loeb GE; Berwald-Netter Y; Okun LM
    Exp Cell Res; 1972 Sep; 74(1):61-6. PubMed ID: 4672477
    [No Abstract]   [Full Text] [Related]  

  • 9. An array of microelectrodes to stimulate and record from cardiac cells in culture.
    Israel DA; Barry WH; Edell DJ; Mark RG
    Am J Physiol; 1984 Oct; 247(4 Pt 2):H669-74. PubMed ID: 6496708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Amplifier for microelectrode studies].
    Bondarev AP; Korbin VI; Pavlov BN
    Fiziol Zh SSSR Im I M Sechenova; 1980 Apr; 66(4):597-9. PubMed ID: 7389948
    [No Abstract]   [Full Text] [Related]  

  • 11. Patch voltage clamping with low-resistance seals: loose patch clamp.
    Roberts WM; Almers W
    Methods Enzymol; 1992; 207():155-76. PubMed ID: 1382182
    [No Abstract]   [Full Text] [Related]  

  • 12. Microassembly techniques for a three-dimensional neural stimulating microelectrode array.
    Yao Y; Gulari MN; Wise KD
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4643-6. PubMed ID: 17947106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks.
    Berdondini L; Imfeld K; Maccione A; Tedesco M; Neukom S; Koudelka-Hep M; Martinoia S
    Lab Chip; 2009 Sep; 9(18):2644-51. PubMed ID: 19704979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane response to current pulses in spheroidal aggregates of embryonic heart cells.
    Dehaan RL; Fozzard HA
    J Gen Physiol; 1975 Feb; 65(2):207-22. PubMed ID: 1117281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Transistorized amplifier of microelectrode leads with expanded possibilities for application].
    Dan'ko SG; Kurchavyĭ GG
    Fiziol Zh SSSR Im I M Sechenova; 1973 Aug; 59(8):1293-5. PubMed ID: 4790413
    [No Abstract]   [Full Text] [Related]  

  • 16. [Floating microelectrode for recording the spike activity of the cerebral neurons of homeothermic animals].
    Butukhanov VV; Stepanov II; Gevorgian EG
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):764-7. PubMed ID: 7286311
    [No Abstract]   [Full Text] [Related]  

  • 17. A low-noise optically isolated preamplifier for use with extracellular microelectrodes.
    Millar J; Barnett TG
    J Neurosci Methods; 1994 Mar; 51(2):119-22. PubMed ID: 8051943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale, high-resolution data acquisition system for extracellular recording of electrophysiological activity.
    Imfeld K; Neukom S; Maccione A; Bornat Y; Martinoia S; Farine PA; Koudelka-Hep M; Berdondini L
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2064-73. PubMed ID: 18632369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the first amplifier stage in MEA systems on extracellular signal shapes.
    Wrobel G; Zhang Y; Krause HJ; Wolters N; Sommerhage F; Offenhäusser A; Ingebrandt S
    Biosens Bioelectron; 2007 Jan; 22(6):1092-6. PubMed ID: 16713242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip.
    Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA
    J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.