These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8377513)

  • 21. Automatic positioning and sensing microelectrode array (APSMEA) for multi-site electrophysiological recordings.
    Pan L; Xiang G; Huang L; Yu Z; Cheng J; Xing W; Zhou Y
    J Neurosci Methods; 2008 May; 170(1):123-9. PubMed ID: 18295341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation, data acquisition, spikes detection and time/rate analysis with a graphical programming system: an application to vision studies.
    Poindessault JP; Beauquin C; Gaillard F
    J Neurosci Methods; 1995 Jul; 59(2):225-35. PubMed ID: 8531491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Measurement circuit with an operational amplifier for microelectrode bridge].
    Hoshimiya N; Matsuo M
    Iyodenshi To Seitai Kogaku; 1974 Aug; 12(4):233-9. PubMed ID: 4475267
    [No Abstract]   [Full Text] [Related]  

  • 24. Adaptation of the Reitboeck method of multiple microelectrode recording to the neocortex of the waking monkey.
    Mountcastle VB; Reitboeck HJ; Poggio GF; Steinmetz MA
    J Neurosci Methods; 1991 Jan; 36(1):77-84. PubMed ID: 2062112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microelectrode amplifier for intracellular stimulation and recording.
    Peltoranta M; Malmivuo J; Nieminen K; Oja S
    Med Biol Eng Comput; 1983 Nov; 21(6):731-8. PubMed ID: 6664133
    [No Abstract]   [Full Text] [Related]  

  • 27. A simple circuit for automatic continuous recording of microelectrode resitance.
    Naylor GR
    Pflugers Arch; 1978 Dec; 378(2):107-10. PubMed ID: 569830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Universal method for microelectrode and neurochemical investigations of subcortical brain structures of awake cats.
    Suvorov NF; Mikhailov AV; Voilokova NL; II'ina EV
    Neurosci Behav Physiol; 1996; 26(3):251-5. PubMed ID: 8823742
    [No Abstract]   [Full Text] [Related]  

  • 29. A computer-controlled system for post-stimulus time histogram and wind-up studies.
    Budai D
    J Neurosci Methods; 1994 Mar; 51(2):205-11. PubMed ID: 8051951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Differentiator for microelectrode studies of cells].
    Karpushov EN; Prosheva VI
    Fiziol Zh SSSR Im I M Sechenova; 1981 Nov; 67(11):1752-5. PubMed ID: 7327286
    [No Abstract]   [Full Text] [Related]  

  • 31. Preparation of carbon-fibre microelectrode for extracellular recording of synaptic potentials.
    Kuras A; Gutmaniene N
    J Neurosci Methods; 1995 Nov; 62(1-2):207-12. PubMed ID: 8750105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An integrated multielectrode electrophysiology system.
    Borroni A; Chen FM; LeCursi N; Grover LM; Teyler TJ
    J Neurosci Methods; 1991 Feb; 36(2-3):177-84. PubMed ID: 2062113
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced computer control of electrophysiological experimentation.
    Thomsen L; Pearson GT; Skadhauge E; Hviid Larsen E
    J Neurosci Methods; 1996 Mar; 65(1):19-26. PubMed ID: 8815304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A PC-based programming-apparatus unit for the single-electrode fixation of the membrane potential of excited cells].
    Mogilevskiĭ AIa; Vinetskiĭ VM; Kutovoĭ AE; Verbnyĭ IaI; Fedorov NK
    Fiziol Zh Im I M Sechenova; 1994 Mar; 80(3):129-34. PubMed ID: 7527699
    [No Abstract]   [Full Text] [Related]  

  • 36. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A miniature multichannel preamplifier for recording electrophysiological activity in freely moving animals.
    Korshunov VA
    Neurosci Behav Physiol; 2009 Feb; 39(2):141-5. PubMed ID: 19139998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct-growth carbon nanotubes on 3D structural microelectrodes for electrophysiological recording.
    Pan AI; Lin MH; Chung HW; Chen H; Yeh SR; Chuang YJ; Chang YC; Yew TR
    Analyst; 2016 Jan; 141(1):279-84. PubMed ID: 26588673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ion selective microelectrodes: computer-controlled calibration, plotting, and data analysis.
    Levy S; Tillem L; Tillotson DL
    J Neurosci Methods; 1985; 15(3):253-61. PubMed ID: 3841575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-electrode array for measuring evoked potentials from surface of ferret primary auditory cortex.
    Owens AL; Denison TJ; Versnel H; Rebbert M; Peckerar M; Shamma SA
    J Neurosci Methods; 1995 May; 58(1-2):209-20. PubMed ID: 7475229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.