These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 8378081)

  • 1. Functional analysis of the carboxy-terminal transforming region of v-Myc: binding to Max is necessary, but not sufficient, for cellular transformation.
    Min S; Mascarenhas NT; Taparowsky EJ
    Oncogene; 1993 Oct; 8(10):2691-701. PubMed ID: 8378081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of sequences responsible for the differential regulation of Myc function by delta Max and Max.
    Västrik I; Mäkelä TP; Koskinen PJ; Alitalo K
    Oncogene; 1995 Aug; 11(3):553-60. PubMed ID: 7630640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects by Mad and Max on transformation by cellular and viral oncoproteins.
    Cerni C; Bousset K; Seelos C; Burkhardt H; Henriksson M; Lüscher B
    Oncogene; 1995 Aug; 11(3):587-96. PubMed ID: 7630643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myc protein structure: localization of DNA-binding and protein dimerization domains.
    Kerkhoff E; Bister K
    Oncogene; 1991 Jan; 6(1):93-102. PubMed ID: 1992448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity.
    Crouch DH; Fisher F; Clark W; Jayaraman PS; Goding CR; Gillespie DA
    Oncogene; 1993 Jul; 8(7):1849-55. PubMed ID: 8510929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. v-Myc, but not Max, possesses domains that function in both transcription activation and cellular transformation.
    Min S; Taparowsky EJ
    Oncogene; 1992 Aug; 7(8):1531-40. PubMed ID: 1630816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation of oncogenes in the multistep transformation of established fibroblasts in culture.
    Davenport EA; Drobes BL; Menke SL; Vaidya TB; Taparowsky EJ
    Anticancer Res; 1988; 8(5A):959-69. PubMed ID: 2845855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max.
    Davis LJ; Halazonetis TD
    Oncogene; 1993 Jan; 8(1):125-32. PubMed ID: 8423990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of mutant and wild-type MC29 v-myc alleles and biochemical properties of their protein products.
    Bister K; Trachmann C; Jansen HW; Schroeer B; Patschinsky T
    Oncogene; 1987 May; 1(2):97-109. PubMed ID: 3438084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of the N-terminal domain of the Myc oncoprotein.
    Oster SK; Mao DY; Kennedy J; Penn LZ
    Oncogene; 2003 Apr; 22(13):1998-2010. PubMed ID: 12673205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1.
    Rao G; Alland L; Guida P; Schreiber-Agus N; Chen K; Chin L; Rochelle JM; Seldin MF; Skoultchi AI; DePinho RA
    Oncogene; 1996 Mar; 12(5):1165-72. PubMed ID: 8649810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viral mutations enhance the Max binding properties of the vMyc b-HLH-LZ domain.
    Crouch DH; Fisher F; La Rocca SA; Goding CR; Gillespie DA
    Nucleic Acids Res; 2005; 33(16):5235-42. PubMed ID: 16166655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation.
    Lüscher B; Larsson LG
    Oncogene; 1999 May; 18(19):2955-66. PubMed ID: 10378692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcription activation domains of v-Myc and VP16 interact with common factors required for cellular transformation and proliferation.
    Min S; Crider-Miller SJ; Taparowsky EJ
    Cell Growth Differ; 1994 Jun; 5(6):563-73. PubMed ID: 8086335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA binding by N- and L-Myc proteins.
    Ma A; Moroy T; Collum R; Weintraub H; Alt FW; Blackwell TK
    Oncogene; 1993 Apr; 8(4):1093-8. PubMed ID: 8455937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K
    J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oncogene-mediated multistep transformation of C3H10T1/2 cells.
    Taparowsky EJ; Heaney ML; Parsons JT
    Cancer Res; 1987 Aug; 47(15):4125-9. PubMed ID: 3300959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming ability of Gag-Myc fusion proteins correlates with Gag-Myc protein stability and transcriptional repression.
    Law W; Linial ML
    Oncogene; 2001 Mar; 20(9):1118-27. PubMed ID: 11314049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regions within the c-Myc protein that are necessary for transformation are also required for inhibition of differentiation of murine erythroleukemia cells.
    Bar-Ner M; Messing LT; Cultraro CM; Birrer MJ; Segal S
    Cell Growth Differ; 1992 Mar; 3(3):183-90. PubMed ID: 1633109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.