BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8378345)

  • 21. Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase.
    Crespo A; Martí MA; Estrin DA; Roitberg AE
    J Am Chem Soc; 2005 May; 127(19):6940-1. PubMed ID: 15884923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalysis of concerted reactions by antibodies: the Claisen rearrangement.
    Hilvert D; Carpenter SH; Nared KD; Auditor MT
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):4953-5. PubMed ID: 3393525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How an enzyme surmounts the activation energy barrier.
    Schowen RL
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):11931-2. PubMed ID: 14530397
    [No Abstract]   [Full Text] [Related]  

  • 24. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rearrangement of chorismate to prephenate. Use of chorismate mutase inhibitors to define the transition state structure.
    Andrews PR; Cain EN; Rizzardo E; Smith GD
    Biochemistry; 1977 Nov; 16(22):4848-52. PubMed ID: 911795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystallization and preliminary structural studies of a chorismate mutase catalytic antibody complexed with a transition state analog.
    Haynes MR; Stura EA; Hilvert D; Wilson IA
    Proteins; 1994 Feb; 18(2):198-200. PubMed ID: 8159668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary tritium isotope effects as probes of the enzymic and nonenzymic conversion of chorismate to prephenate.
    Addadi L; Jaffe EK; Knowles JR
    Biochemistry; 1983 Sep; 22(19):4494-501. PubMed ID: 6354259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase.
    Guimarães CR; Repasky MP; Chandrasekhar J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2003 Jun; 125(23):6892-9. PubMed ID: 12783541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of a transition state analogue inhibitor binding to Escherichia coli chorismate mutase: probing the charge state of an active site residue and its role in inhibitor binding and catalysis.
    Lee AY; Zhang S; Kongsaeree P; Clardy J; Ganem B; Erickson JW; Xie D
    Biochemistry; 1998 Jun; 37(25):9052-7. PubMed ID: 9636050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monofunctional chorismate mutase from Bacillus subtilis: kinetic and 13C NMR studies on the interactions of the enzyme with its ligands.
    Gray JV; Eren D; Knowles JR
    Biochemistry; 1990 Sep; 29(37):8872-8. PubMed ID: 2125470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH Dependence of catalysis by Pseudomonas aeruginosa isochorismate-pyruvate lyase: implications for transition state stabilization and the role of lysine 42.
    Olucha J; Ouellette AN; Luo Q; Lamb AL
    Biochemistry; 2011 Aug; 50(33):7198-207. PubMed ID: 21751784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and computational investigation of the uncatalyzed rearrangement and elimination reactions of isochorismate.
    DeClue MS; Baldridge KK; Kast P; Hilvert D
    J Am Chem Soc; 2006 Feb; 128(6):2043-51. PubMed ID: 16464106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis.
    Kast P; Asif-Ullah M; Jiang N; Hilvert D
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5043-8. PubMed ID: 8643526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics simulation of the last step of a catalytic cycle: product release from the active site of the enzyme chorismate mutase from Mycobacterium tuberculosis.
    Choutko A; van Gunsteren WF
    Protein Sci; 2012 Nov; 21(11):1672-81. PubMed ID: 22898919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hybrid potential reaction path and free energy study of the chorismate mutase reaction.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J; Field MJ
    J Am Chem Soc; 2001 Feb; 123(8):1709-12. PubMed ID: 11456771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Location of the active site of allosteric chorismate mutase from Saccharomyces cerevisiae, and comments on the catalytic and regulatory mechanisms.
    Xue Y; Lipscomb WN
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10595-8. PubMed ID: 7479847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of chorismate mutase catalysis by QM/MM modelling of enzyme-catalysed and uncatalysed reactions.
    Claeyssens F; Ranaghan KE; Lawan N; Macrae SJ; Manby FR; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2011 Mar; 9(5):1578-90. PubMed ID: 21243152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of a catalytic antibody Fab with esterase-like activity.
    Golinelli-Pimpaneau B; Gigant B; Bizebard T; Navaza J; Saludjian P; Zemel R; Tawfik DS; Eshhar Z; Green BS; Knossow M
    Structure; 1994 Mar; 2(3):175-83. PubMed ID: 8069632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependence of the structure of the substrate and active site of the Thermus thermophilus chorismate mutase E x S complex.
    Zhang X; Bruice TC
    Biochemistry; 2006 Jul; 45(28):8562-7. PubMed ID: 16834330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A transition path sampling study of the reaction catalyzed by the enzyme chorismate mutase.
    Crehuet R; Field MJ
    J Phys Chem B; 2007 May; 111(20):5708-18. PubMed ID: 17474768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.