These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 8378402)

  • 1. Maturation and hypoxia influence the calcium dose response relationship in ovine cerebral arteries.
    Zurcher SD; Pearce WJ
    Proc West Pharmacol Soc; 1993; 36():71-5. PubMed ID: 8378402
    [No Abstract]   [Full Text] [Related]  

  • 2. Developmental contractility changes in ovine peripheral cerebral arteries.
    Elliott SR; Pearce WJ
    Proc West Pharmacol Soc; 1993; 36():63-70. PubMed ID: 8378400
    [No Abstract]   [Full Text] [Related]  

  • 3. [Oxygen, carbon dioxide and calcium control of the mechanisms of relaxation in the cerebral artery smooth musculature].
    Azin AL
    Fiziol Zh SSSR Im I M Sechenova; 1982 Jan; 68(1):59-63. PubMed ID: 6277705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of maturation on ovine cerebrovascular function.
    Pearce WJ; Hull AD; Long DM; Longo LD
    Proc West Pharmacol Soc; 1991; 34():247-54. PubMed ID: 1788293
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanisms of hypoxic relaxation in isolated cerebral arteries: the effects of extracellular calcium concentration.
    Pearce WJ; Ashwal S
    Proc West Pharmacol Soc; 1986; 29():199-202. PubMed ID: 3763610
    [No Abstract]   [Full Text] [Related]  

  • 6. Maturation modulates serotonin- and potassium-induced calcium-45 uptake in ovine carotid and cerebral arteries.
    Zurcher SD; Pearce WJ
    Pediatr Res; 1995 Oct; 38(4):493-500. PubMed ID: 8559599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Electrical and contractile properties of the smooth muscle cells of cerebral arteries].
    Buryĭ VA; Gokina NI; Gurkovskaia AV
    Fiziol Zh SSSR Im I M Sechenova; 1981 Sep; 67(9):1399-1403. PubMed ID: 7297736
    [No Abstract]   [Full Text] [Related]  

  • 8. [Contractile function of the smooth muscle of the superficial arteries of the cerebral cortex].
    Klimin VG; Azin AL
    Fiziol Zh SSSR Im I M Sechenova; 1986 Aug; 72(8):1095-100. PubMed ID: 3093287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The voltage-dependent non-selective cation channel sensitive to the L-type calcium channel blocker efonidipine regulates Ca2+ influx in brain vascular smooth muscle cells.
    Matsuoka T; Nishizaki T; Nomura T
    Biochem Biophys Res Commun; 1997 Nov; 240(2):484-7. PubMed ID: 9388505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in thickness, contractility, and hypoxic sensitivity of newborn lamb cerebral arteries.
    Pearce WJ; Ashwal S
    Pediatr Res; 1987 Aug; 22(2):192-6. PubMed ID: 3658545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of changes in extracellular pH on the initial tonus of the main artery of the rat brain and its response to serotonin].
    Fadiukova OE; Storozhevykh TP; Pinelis VG; Koshelev VB
    Biull Eksp Biol Med; 1998 Mar; 125(3):251-3. PubMed ID: 9606535
    [No Abstract]   [Full Text] [Related]  

  • 12. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat.
    Lagaud GJ; Skarsgard PL; Laher I; van Breemen C
    J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Role of extracellular pO2 and pCO2 in membrane mechanisms regulating cerebral artery smooth muscle].
    Azin AL
    Fiziol Zh SSSR Im I M Sechenova; 1981 Nov; 67(11):1652-60. PubMed ID: 6799332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histamine decreases myogenic tone in rat cerebral arteries by H2-receptor-mediated KV channel activation, independent of endothelium and cyclic AMP.
    Jarajapu YP; Oomen C; Uteshev VV; Knot HJ
    Eur J Pharmacol; 2006 Oct; 547(1-3):116-24. PubMed ID: 16920098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methanol-induced contraction of canine cerebral artery and its possible mechanism of action.
    Li W; Altura BT; Altura BM
    Toxicol Appl Pharmacol; 1998 Jun; 150(2):361-8. PubMed ID: 9653067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism by which aminoglycoside antibiotics cause vasodilation of canine cerebral arteries.
    Gergawy M; Vollrath B; Cook D
    Br J Pharmacol; 1998 Nov; 125(6):1150-7. PubMed ID: 9863641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents.
    Hercule HC; Salanova B; Essin K; Honeck H; Falck JR; Sausbier M; Ruth P; Schunck WH; Luft FC; Gollasch M
    Exp Physiol; 2007 Nov; 92(6):1067-76. PubMed ID: 17675416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics of the response of the middle cerebral artery to serotonin].
    Mirzoian RS; Semkina GA; Matsievskiĭ DD
    Biull Eksp Biol Med; 1997 Oct; 124(10):417-20. PubMed ID: 9410173
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery.
    Yamakawa N; Ohhashi M; Waga S; Itoh T
    Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral blood flow under conditions of circulatory hypoxia with particular reference to the retransfusion period.
    Kapuściński A
    Neuropatol Pol; 1974; 12(4):565-72. PubMed ID: 4449594
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.