These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 8378422)

  • 1. Histochemical and physiological correlates of training- and detraining-induced changes in the recovery from a fatigue test.
    Sinacore DR; Coyle EF; Hagberg JM; Holloszy JO
    Phys Ther; 1993 Oct; 73(10):661-7. PubMed ID: 8378422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadriceps femoris muscle resistance to fatigue using an electrically elicited fatigue test following intense endurance exercise training.
    Sinacore DR; Jacobson RB; Delitto A
    Phys Ther; 1994 Oct; 74(10):930-9; discussion 939-42. PubMed ID: 8090844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery from a 1-minute bout of fatiguing exercise: characteristics, reliability, and responsiveness.
    Sinacore DR; Bander BL; Delitto A
    Phys Ther; 1994 Mar; 74(3):234-41; discussion 241-4. PubMed ID: 8115457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise.
    Madsen K; Pedersen PK; Djurhuus MS; Klitgaard NA
    J Appl Physiol (1985); 1993 Oct; 75(4):1444-51. PubMed ID: 8282588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training.
    Neufer PD
    Sports Med; 1989 Nov; 8(5):302-20. PubMed ID: 2692122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of detraining on the functional capacity of previously trained breast cancer survivors.
    Herrero F; San Juan AF; Fleck SJ; Foster C; Lucia A
    Int J Sports Med; 2007 Mar; 28(3):257-64. PubMed ID: 17111322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle fiber area alterations in two opposing modes of resistance-exercise training in the same individual.
    Jackson CG; Dickinson AL; Ringel SP
    Eur J Appl Physiol Occup Physiol; 1990; 61(1-2):37-41. PubMed ID: 2149702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of isokinetic cycling versus weight training on maximal power output and endurance performance in cycling.
    Koninckx E; Van Leemputte M; Hespel P
    Eur J Appl Physiol; 2010 Jul; 109(4):699-708. PubMed ID: 20213468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining.
    Klausen K; Andersen LB; Pelle I
    Acta Physiol Scand; 1981 Sep; 113(1):9-16. PubMed ID: 7315443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering.
    Zavorsky GS
    Sports Med; 2000 Jan; 29(1):13-26. PubMed ID: 10688280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in anaerobic threshold as the result of endurance training and detraining.
    Ready AE; Quinney HA
    Med Sci Sports Exerc; 1982; 14(4):292-6. PubMed ID: 7132647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical performance and muscle metabolism during beta-adrenergic blockade in man.
    Kaiser P
    Acta Physiol Scand Suppl; 1984; 536():1-53. PubMed ID: 6151777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high-intensity endurance training on isokinetic muscle power.
    Tabata I; Atomi Y; Kanehisa H; Miyashita M
    Eur J Appl Physiol Occup Physiol; 1990; 60(4):254-8. PubMed ID: 2357980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions.
    Taivassalo T; Gardner JL; Taylor RW; Schaefer AM; Newman J; Barron MJ; Haller RG; Turnbull DM
    Brain; 2006 Dec; 129(Pt 12):3391-401. PubMed ID: 17085458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength training effects on aerobic power and short-term endurance.
    Hickson RC; Rosenkoetter MA; Brown MM
    Med Sci Sports Exerc; 1980; 12(5):336-9. PubMed ID: 7453510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Test-retest reliability of lower limb isokinetic endurance in COPD: A comparison of angular velocities.
    Ribeiro F; Lépine PA; Garceau-Bolduc C; Coats V; Allard É; Maltais F; Saey D
    Int J Chron Obstruct Pulmon Dis; 2015; 10():1163-72. PubMed ID: 26124656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between skeletal muscle characteristics and aerobic performance in sedentary and active subjects.
    Lortie G; Simoneau JA; Hamel P; Boulay MR; Bouchard C
    Eur J Appl Physiol Occup Physiol; 1985; 54(5):471-5. PubMed ID: 4085474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detraining: loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus.
    Mujika I; Padilla S
    Sports Med; 2000 Sep; 30(3):145-54. PubMed ID: 10999420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two weeks of detraining reduces cardiopulmonary function and muscular fitness in endurance athletes.
    Chen YT; Hsieh YY; Ho JY; Lin TY; Lin JC
    Eur J Sport Sci; 2022 Mar; 22(3):399-406. PubMed ID: 33517866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.