These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8378556)

  • 21. Adaptation of rat gastrocnemius muscles to 2 weeks of centrifugation: myofibers and extracellular matrix.
    Stauber WT; Miller GR; Grimmett JG
    Aviat Space Environ Med; 1998 Jun; 69(6 Suppl):A45-8. PubMed ID: 10776452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of isometric contraction training by electrostimulation on Type I and II hindlimb muscles in cerebral ischemia model rats].
    Lee YK; Choe MA; An GJ
    Taehan Kanho Hakhoe Chi; 2006 Dec; 36(7):1232-41. PubMed ID: 17211126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of lower limb unloading on skeletal muscle mass and function in humans.
    Berg HE; Dudley GA; Häggmark T; Ohlsén H; Tesch PA
    J Appl Physiol (1985); 1991 Apr; 70(4):1882-5. PubMed ID: 2055867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical stimulation of the plantar foot surface attenuates soleus muscle atrophy induced by hindlimb unloading in rats.
    Kyparos A; Feeback DL; Layne CS; Martinez DA; Clarke MS
    J Appl Physiol (1985); 2005 Aug; 99(2):739-46. PubMed ID: 15817719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading.
    Ingalls CP; Warren GL; Armstrong RB
    J Appl Physiol (1985); 1999 Jul; 87(1):386-90. PubMed ID: 10409599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension.
    McDonald KS; Delp MD; Fitts RH
    J Appl Physiol (1985); 1992 Sep; 73(3):1135-40. PubMed ID: 1400027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cutaneous receptor stimulation on muscular atrophy developed in hindlimb unloading condition.
    De-Doncker L; Picquet F; Falempin M
    J Appl Physiol (1985); 2000 Dec; 89(6):2344-51. PubMed ID: 11090588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compared effects of hindlimb unloading versus terrestrial deafferentation on muscular properties of the rat soleus.
    Picquet F; Falempin M
    Exp Neurol; 2003 Jul; 182(1):186-94. PubMed ID: 12821389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity.
    Mondon CE; Rodnick KJ; Dolkas CB; Azhar S; Reaven GM
    Adv Space Res; 1992; 12(2-3):169-77. PubMed ID: 11537005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agonist muscle adaptation accompanied by antagonist muscle atrophy in the hindlimb of mice following stretch-shortening contraction training.
    Rader EP; Naimo MA; Ensey J; Baker BA
    BMC Musculoskelet Disord; 2017 Feb; 18(1):60. PubMed ID: 28148306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting.
    Kandarian SC; Boushel RC; Schulte LM
    J Appl Physiol (1985); 1991 Sep; 71(3):910-4. PubMed ID: 1757328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hindlimb muscle atrophy occurs from short-term undernutrition in rats.
    Kim JY
    Biol Res Nurs; 2013 Oct; 15(4):459-64. PubMed ID: 22997348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Didonna MP; Frigeri A; Nicchia GP; Svelto M; Camerino C; Zallone A; Camerino DC
    Neurobiol Dis; 2005 Mar; 18(2):356-65. PubMed ID: 15686964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term physical inactivity exacerbates hindlimb unloading-induced muscle atrophy in young rat soleus muscle.
    Yoshihara T; Natsume T; Tsuzuki T; Chang SW; Kakigi R; Machida S; Sugiura T; Naito H
    J Appl Physiol (1985); 2021 Apr; 130(4):1214-1225. PubMed ID: 33600278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial patterns of atrophied muscle fibers during exercised recovery.
    Kasper CE
    Biol Res Nurs; 1999 Jul; 1(1):38-47. PubMed ID: 11225295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in fiber composition of soleus muscle during rat hindlimb suspension.
    Templeton GH; Sweeney HL; Timson BF; Padalino M; Dudenhoeffer GA
    J Appl Physiol (1985); 1988 Sep; 65(3):1191-5. PubMed ID: 2972672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of hindlimb immobilization and recovery on compensatory hypertrophied rat plantaris muscle.
    Ianuzzo CD; Blank S; Crassweller A; Spalding J; Hamilton N; Dabrowski B; Rooks N
    Mol Cell Biochem; 1989 Oct; 90(1):57-68. PubMed ID: 2532707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sarcolemmal disruption in reloaded atrophic skeletal muscle.
    Kasper CE
    J Appl Physiol (1985); 1995 Aug; 79(2):607-14. PubMed ID: 7592225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sarcolemmal loss of active nNOS (Nos1) is an oxidative stress-dependent, early event driving disuse atrophy.
    Lechado I Terradas A; Vitadello M; Traini L; Namuduri AV; Gastaldello S; Gorza L
    J Pathol; 2018 Dec; 246(4):433-446. PubMed ID: 30066461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clenbuterol accelerates recovery after immobilization-induced atrophy of rat hindlimb muscle.
    Suzuki H; Yoshikawa Y; Tsujimoto H; Kitaura T; Muraoka I
    Acta Histochem; 2020 Jan; 122(1):151453. PubMed ID: 31761272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.