These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 8379496)

  • 1. Development of a database for sensory irritants and its use in establishing occupational exposure limits.
    Schaper M
    Am Ind Hyg Assoc J; 1993 Sep; 54(9):488-544. PubMed ID: 8379496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A short-term test to predict acceptable levels of exposure to airborne sensory irritants.
    Kane LE; Barrow CS; Alarie Y
    Am Ind Hyg Assoc J; 1979 Mar; 40(3):207-29. PubMed ID: 495461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical properties of nonreactive volatile organic chemicals to estimate RD50: alternatives to animal studies.
    Alarie Y; Nielsen GD; Andonian-Haftvan J; Abraham MH
    Toxicol Appl Pharmacol; 1995 Sep; 134(1):92-9. PubMed ID: 7676461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing short-term occupational exposure limits (STELs) for sensory irritants using predictive and
    Russell AJ; Vincent M; Buerger AN; Dotson S; Lotter J; Maier A
    Inhal Toxicol; 2024 Jan; 36(1):13-25. PubMed ID: 38252504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensory irritation caused by various industrial airborne chemicals.
    de Ceaurriz JC; Micillino JC; Bonnet P; Guenier JP
    Toxicol Lett; 1981 Oct; 9(2):137-43. PubMed ID: 7302985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation and application of the RD50 for determining acceptable exposure levels of airborne sensory irritants for the general public.
    Kuwabara Y; Alexeeff GV; Broadwin R; Salmon AG
    Environ Health Perspect; 2007 Nov; 115(11):1609-16. PubMed ID: 18007993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of airborne sensory irritants for setting exposure limits or guidelines: A systematic approach.
    Nielsen GD; Wolkoff P
    Regul Toxicol Pharmacol; 2017 Nov; 90():308-317. PubMed ID: 28911939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory peripheral chemosensory irritation, acute and repeated exposure toxicity studies with aerosols of triethylene glycol.
    Ballantyne B; Snellings WM; Norris JC
    J Appl Toxicol; 2006; 26(5):387-96. PubMed ID: 16909429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Decrease in the respiration rate in mice as an indicator of the irritating effects of chemical substances on the upper respiratory tract].
    Tomas T; Oliskiewicz W; Czerczak S; Sokal J
    Med Pr; 1985; 36(5):295-302. PubMed ID: 3831699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory irritation structure-activity study of inhaled aldehydes in B6C3F1 and Swiss-Webster mice.
    Steinhagen WH; Barrow CS
    Toxicol Appl Pharmacol; 1984 Mar; 72(3):495-503. PubMed ID: 6710500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of noncancer endpoints as a basis for establishing a reference concentration for formaldehyde.
    Bender J
    Regul Toxicol Pharmacol; 2002 Feb; 35(1):23-31. PubMed ID: 11846633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory irritation and pulmonary irritation by airborne allyl acetate, allyl alcohol, and allyl ether compared to acrolein.
    Nielsen GD; Bakbo JC; Holst E
    Acta Pharmacol Toxicol (Copenh); 1984 Apr; 54(4):292-8. PubMed ID: 6730984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory tract lesions induced by sensory irritants at the RD50 concentration.
    Buckley LA; Jiang XZ; James RA; Morgan KT; Barrow CS
    Toxicol Appl Pharmacol; 1984 Jul; 74(3):417-29. PubMed ID: 6740688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the sensory irritation response in mice to chlorine and nitrogen trichloride.
    Gagnaire F; Azim S; Bonnet P; Hecht G; Hery M
    J Appl Toxicol; 1994; 14(6):405-9. PubMed ID: 7884144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory effects of a synthetic metalworking fluid and its components.
    Detwiler-Okabayashi KA; Schaper MM
    Arch Toxicol; 1996; 70(3-4):195-201. PubMed ID: 8825677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereospecificity of the sensory irritation receptor for nonreactive chemicals illustrated by pinene enantiomers.
    Kasanen JP; Pasanen AL; Pasanen P; Liesivuori J; Kosma VM; Alarie Y
    Arch Toxicol; 1998; 72(8):514-23. PubMed ID: 9765067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute inhalation toxicity and sensory irritation of dimethylamine.
    Steinhagen WH; Swenberg JA; Barrow CS
    Am Ind Hyg Assoc J; 1982 Jun; 43(6):411-7. PubMed ID: 7113921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory irritation to formaldehyde and acrolein during single and repeated exposures in mice.
    Kane LE; Alarie Y
    Am Ind Hyg Assoc J; 1977 Oct; 38(10):509-22. PubMed ID: 562615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulmonary and sensory irritation of diphenylmethane-4,4'- and dicyclohexylmethane-4,4'-diisocyanate.
    Weyel DA; Schaffer RB
    Toxicol Appl Pharmacol; 1985 Mar; 77(3):427-33. PubMed ID: 3975910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs.
    Korpi A; Kasanen JP; Alarie Y; Kosma VM; Pasanen AL
    Arch Environ Health; 1999; 54(5):347-52. PubMed ID: 10501152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.