These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8379842)

  • 21. Supported treadmill ambulation training after spinal cord injury: a pilot study.
    Protas EJ; Holmes SA; Qureshy H; Johnson A; Lee D; Sherwood AM
    Arch Phys Med Rehabil; 2001 Jun; 82(6):825-31. PubMed ID: 11387590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait speed in relation to categories of functional ambulation after spinal cord injury.
    van Hedel HJ;
    Neurorehabil Neural Repair; 2009 May; 23(4):343-50. PubMed ID: 19036717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Old spinal cord injury treated by pulsed electric stimulation].
    Liu SQ
    Zhonghua Wai Ke Za Zhi; 1992 May; 30(5):297-300, 318. PubMed ID: 1289009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Restorative effects of stimulating medullary raphe after spinal cord injury.
    Hentall ID; Burns SB
    J Rehabil Res Dev; 2009; 46(1):109-22. PubMed ID: 19533524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation.
    Field-Fote EC; Tepavac D
    Phys Ther; 2002 Jul; 82(7):707-15. PubMed ID: 12088467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects.
    Mirbagheri MM; Ladouceur M; Barbeau H; Kearney RE
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):280-9. PubMed ID: 12611365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced stretch reflex excitability of the soleus muscle in persons with incomplete rather than complete chronic spinal cord injury.
    Nakazawa K; Kawashima N; Akai M
    Arch Phys Med Rehabil; 2006 Jan; 87(1):71-5. PubMed ID: 16401441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of functional electrical stimulation cycling on late functional improvement in patients with chronic incomplete spinal cord injury.
    Yaşar E; Yılmaz B; Göktepe S; Kesikburun S
    Spinal Cord; 2015 Dec; 53(12):866-9. PubMed ID: 25687513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physical rehabilitation as an agent for recovery after spinal cord injury.
    Behrman AL; Harkema SJ
    Phys Med Rehabil Clin N Am; 2007 May; 18(2):183-202, v. PubMed ID: 17543768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of tone-reducing orthotics on walking of an individual after incomplete spinal cord injury.
    Nash B; Roller JM; Parker MG
    J Neurol Phys Ther; 2008 Mar; 32(1):39-47. PubMed ID: 18463554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preliminary evaluation of a controlled-brake orthosis for FES-aided gait.
    Goldfarb M; Korkowski K; Harrold B; Durfee W
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):241-8. PubMed ID: 14518787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of soleus H-reflex modulation after incomplete spinal cord injury in 2 walking environments: treadmill with body weight support and overground.
    Phadke CP; Wu SS; Thompson FJ; Behrman AL
    Arch Phys Med Rehabil; 2007 Dec; 88(12):1606-13. PubMed ID: 18047875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combinatory electrical and pharmacological neuroprosthetic interfaces to regain motor function after spinal cord injury.
    Musienko P; van den Brand R; Maerzendorfer O; Larmagnac A; Courtine G
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2707-11. PubMed ID: 19635690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured subject.
    Field-Fote E
    Spinal Cord; 2002 Aug; 40(8):428. PubMed ID: 12124674
    [No Abstract]   [Full Text] [Related]  

  • 36. Electromechanical gait training with functional electrical stimulation: case studies in spinal cord injury.
    Hesse S; Werner C; Bardeleben A
    Spinal Cord; 2004 Jun; 42(6):346-52. PubMed ID: 14993895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implanted functional electrical stimulation: an alternative for standing and walking in pediatric spinal cord injury.
    Johnston TE; Betz RR; Smith BT; Mulcahey MJ
    Spinal Cord; 2003 Mar; 41(3):144-52. PubMed ID: 12612616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a practical electrical stimulation system for restoring gait in the paralyzed patient.
    Marsolais EB; Kobetic R
    Clin Orthop Relat Res; 1988 Aug; (233):64-74. PubMed ID: 3261221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spinal direct current stimulation with locomotor training in chronic spinal cord injury.
    Abualait TS; Ibrahim AI
    Saudi Med J; 2020 Jan; 41(1):88-93. PubMed ID: 31915800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine learning in control of functional electrical stimulation systems for locomotion.
    Kostov A; Andrews BJ; Popović DB; Stein RB; Armstrong WW
    IEEE Trans Biomed Eng; 1995 Jun; 42(6):541-51. PubMed ID: 7790010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.