BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 8380224)

  • 1. Specific enzymatic dephosphorylation of the retinoblastoma protein.
    Ludlow JW; Glendening CL; Livingston DM; DeCarprio JA
    Mol Cell Biol; 1993 Jan; 13(1):367-72. PubMed ID: 8380224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Okadaic acid inhibits a protein phosphatase activity involved in formation of the mitotic spindle of GH4 rat pituitary cells.
    Van Dolah FM; Ramsdell JS
    J Cell Physiol; 1992 Jul; 152(1):190-8. PubMed ID: 1320037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoblastoma protein is rapidly dephosphorylated by elevated cyclic adenosine monophosphate levels in human B-lymphoid cells.
    Christoffersen J; Smeland EB; Stokke T; Taskén K; Andersson KB; Blomhoff HK
    Cancer Res; 1994 Apr; 54(8):2245-50. PubMed ID: 8174134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of protein phosphatase-1delta with the retinoblastoma protein and reversible phosphatase activation in mitotic HeLa cells and in cells released from mitosis.
    Puntoni F; Villa-Moruzzi E
    Biochem Biophys Res Commun; 1997 Jun; 235(3):704-8. PubMed ID: 9207224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the mitotic phase pRb-directed protein phosphatase activity.
    Nelson DA; Ludlow JW
    Oncogene; 1997 May; 14(20):2407-15. PubMed ID: 9188855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress induces protein phosphatase 2A-dependent dephosphorylation of the pocket proteins pRb, p107, and p130.
    Cicchillitti L; Fasanaro P; Biglioli P; Capogrossi MC; Martelli F
    J Biol Chem; 2003 May; 278(21):19509-17. PubMed ID: 12621062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein phosphatase type 1-dependent dephosphorylation of the retinoblastoma tumor suppressor protein in ultraviolet-irradiated human skin and keratinocytes.
    Edwards MJ; Thomas RC
    J Invest Dermatol; 2000 Jul; 115(1):88-94. PubMed ID: 10886513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of protein phosphatases in the activation of ICE/CED-3 protease, intracellular acidification, DNA digestion, and apoptosis.
    Morana SJ; Wolf CM; Li J; Reynolds JE; Brown MK; Eastman A
    J Biol Chem; 1996 Jul; 271(30):18263-71. PubMed ID: 8663484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein.
    Nelson DA; Krucher NA; Ludlow JW
    J Biol Chem; 1997 Feb; 272(7):4528-35. PubMed ID: 9020179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific and temporally-regulated retinoblastoma protein dephosphorylation by protein phosphatase type 1.
    Rubin E; Mittnacht S; Villa-Moruzzi E; Ludlow JW
    Oncogene; 2001 Jun; 20(29):3776-85. PubMed ID: 11439341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dephosphorylation of cdc25-C by a type-2A protein phosphatase: specific regulation during the cell cycle in Xenopus egg extracts.
    Clarke PR; Hoffmann I; Draetta G; Karsenti E
    Mol Biol Cell; 1993 Apr; 4(4):397-411. PubMed ID: 8389619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine.
    Chao R; Khan W; Hannun YA
    J Biol Chem; 1992 Nov; 267(33):23459-62. PubMed ID: 1385423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct roles for PP1 and PP2A in phosphorylation of the retinoblastoma protein. PP2a regulates the activities of G(1) cyclin-dependent kinases.
    Yan Y; Mumby MC
    J Biol Chem; 1999 Nov; 274(45):31917-24. PubMed ID: 10542219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulatory networks of the retinoblastoma protein.
    Lee WH; Chen PL; Riley DJ
    Ann N Y Acad Sci; 1995 Mar; 752():432-45. PubMed ID: 7755289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The retinoblastoma-susceptibility gene product becomes phosphorylated in multiple stages during cell cycle entry and progression.
    DeCaprio JA; Furukawa Y; Ajchenbaum F; Griffin JD; Livingston DM
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1795-8. PubMed ID: 1531876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaphase onset and dephosphorylation of mitotic phosphoproteins occur concomitantly.
    Vandré DD; Borisy GG
    J Cell Sci; 1989 Oct; 94 ( Pt 2)():245-58. PubMed ID: 2621223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of a retinoblastoma phosphatase activity by anticancer drugs accompanies p53-independent G1 arrest and apoptosis.
    Dou QP; An B; Will PL
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9019-23. PubMed ID: 7568064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-cycle-dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M.
    Lee JY; Leonhardt LG; Obeid LM
    Biochem J; 1998 Sep; 334 ( Pt 2)(Pt 2):457-61. PubMed ID: 9716505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoprotein phosphatase 1 (PP1) is a component of the isolated sea urchin mitotic apparatus.
    Johnston JA; Sloboda RD; Silver RB
    Cell Motil Cytoskeleton; 1994; 29(3):280-90. PubMed ID: 7895292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest.
    Srethapakdi M; Liu F; Tavorath R; Rosen N
    Cancer Res; 2000 Jul; 60(14):3940-6. PubMed ID: 10919672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.