BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8380417)

  • 1. Stoichiometry of O2 metabolism and NADPH oxidation of the cell-free latent oxidase reconstituted from cytosol and solubilized membrane from resting human neutrophils.
    Green TR; Shangguan X
    J Biol Chem; 1993 Jan; 268(2):857-61. PubMed ID: 8380417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NADPH:O2 oxidoreductase of human neutrophils. Stoichiometry of univalent and divalent reduction of O2.
    Green TR; Wu DE
    J Biol Chem; 1986 May; 261(13):6010-5. PubMed ID: 3009441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA; Leidal KG; Pearson DW; Nauseef WM
    J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diphenylene iodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils. Factors controlling the inhibitory potency of diphenylene iodonium in a cell-free system of oxidase activation.
    Doussière J; Vignais PV
    Eur J Biochem; 1992 Aug; 208(1):61-71. PubMed ID: 1324836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reassessment of the product specificity of the NADPH:O2 oxidoreductase of human neutrophils.
    Green TR; Pratt KL
    Biochem Biophys Res Commun; 1987 Jan; 142(1):213-20. PubMed ID: 3028401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of NADPH oxidase and phospholipase D in permeabilized human neutrophils. Correlation between oxidase activation and phosphatidic acid production.
    Bauldry SA; Elsey KL; Bass DA
    J Biol Chem; 1992 Dec; 267(35):25141-52. PubMed ID: 1334083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity.
    Miki T; Yoshida LS; Kakinuma K
    J Biol Chem; 1992 Sep; 267(26):18695-701. PubMed ID: 1326533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of O2-. generating oxidase of neutrophils by iodonium biphenyl in a cell free system: effect of the redox state of the oxidase complex.
    Doussiere J; Vignais PV
    Biochem Biophys Res Commun; 1991 Feb; 175(1):143-51. PubMed ID: 1847802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human neutrophil cytosolic activation factor of the NADPH oxidase. Characterization of activation kinetics.
    Umeki S
    J Biol Chem; 1990 Mar; 265(9):5049-54. PubMed ID: 2156861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of NADPH diaphorase activity associated with human neutrophil NADPH-O2 oxidoreductase activity.
    Green TR; Wu DE
    FEBS Lett; 1985 Jan; 179(1):82-6. PubMed ID: 3965305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activity of one soluble component of the cell-free NADPH:O2 oxidoreductase of human neutrophils depends on guanosine 5'-O-(3-thio)triphosphate.
    Bolscher BG; Denis SW; Verhoeven AJ; Roos D
    J Biol Chem; 1990 Sep; 265(26):15782-7. PubMed ID: 2203787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton stoichiometry associated with human neutrophil respiratory-burst reactions.
    Gabig TG; Lefker BA; Ossanna PJ; Weiss SJ
    J Biol Chem; 1984 Nov; 259(21):13166-71. PubMed ID: 6490651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The reduction of cytochrome b558 and the activity of the respiratory burst oxidase from human neutrophils.
    Foroozan R; Ruedi JM; Babior BM
    J Biol Chem; 1992 Dec; 267(34):24400-7. PubMed ID: 1332956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of the partially purified membrane component of the superoxide-generating NADPH oxidase of pig neutrophils with phospholipid.
    Nozaki M; Takeshige K; Sumimoto H; Minakami S
    Eur J Biochem; 1990 Jan; 187(2):335-40. PubMed ID: 2153545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory burst of rabbit peritoneal neutrophils. Transition from an NADPH diaphorase activity to an .O2(-)-generating oxidase activity.
    Laporte F; Doussiere J; Vignais PV
    Eur J Biochem; 1990 Nov; 194(1):301-8. PubMed ID: 2174779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purified leukocyte cytochrome b558 incorporated into liposomes catalyzes a cytosolic factor dependent diaphorase activity.
    Li J; Guillory RJ
    Biochemistry; 1997 May; 36(18):5529-37. PubMed ID: 9154936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and isolation of the NADPH-binding protein of the NADPH:O2 oxidoreductase complex of human neutrophils.
    Green TR; Pratt KL
    J Biol Chem; 1990 Nov; 265(31):19324-9. PubMed ID: 2172251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affinity labeling of the cytosolic and membrane components of the respiratory burst oxidase by the 2',3'-dialdehyde derivative of NADPH. Evidence for a cytosolic location of the nucleotide-binding site in the resting cell.
    Smith RM; Curnutte JT; Babior BM
    J Biol Chem; 1989 Feb; 264(4):1958-62. PubMed ID: 2536695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.
    Cross AR; Parkinson JF; Jones OT
    Biochem J; 1984 Oct; 223(2):337-44. PubMed ID: 6497852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.