BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8380775)

  • 1. On the activation of phosphodiesterase by a 26 kDa protein.
    Nikonov SS; Filatov GN; Fesenko EE
    FEBS Lett; 1993 Jan; 316(1):34-6. PubMed ID: 8380775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recoverin and rhodopsin kinase activity in detergent-resistant membrane rafts from rod outer segments.
    Senin II; Höppner-Heitmann D; Polkovnikova OO; Churumova VA; Tikhomirova NK; Philippov PP; Koch KW
    J Biol Chem; 2004 Nov; 279(47):48647-53. PubMed ID: 15355976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. cGMP binding sites on photoreceptor phosphodiesterase: role in feedback regulation of visual transduction.
    Cote RH; Bownds MD; Arshavsky VY
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4845-9. PubMed ID: 8197145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase in photoreceptors.
    Reingruber J; Holcman D
    J Chem Phys; 2008 Oct; 129(14):145102. PubMed ID: 19045167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recoverin regulates light-dependent phosphodiesterase activity in retinal rods.
    Makino CL; Dodd RL; Chen J; Burns ME; Roca A; Simon MI; Baylor DA
    J Gen Physiol; 2004 Jun; 123(6):729-41. PubMed ID: 15173221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transducin GTPase provides for rapid quenching of the cGMP cascade in rod outer segments.
    Arshavsky VYu ; Antoch MP; Lukjanov KA; Philippov PP
    FEBS Lett; 1989 Jul; 250(2):353-6. PubMed ID: 2546803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cGMP- and phosphodiesterase-dependent light-scattering changes in rod disk membrane vesicles: relationship to disk vesicle-disk vesicle aggregation.
    Caretta A; Stein PJ
    Biochemistry; 1985 Sep; 24(20):5685-92. PubMed ID: 3000435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [cGMP-binding centers in photoreceptor membranes].
    Volotovskiĭ ID; Baranova LA; Sheĭko LM; Levko AV; Konev SV
    Mol Biol (Mosk); 1984; 18(4):1053-9. PubMed ID: 6095022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recoverin mediates the calcium effect upon rhodopsin phosphorylation and cGMP hydrolysis in bovine retina rod cells.
    Gorodovikova EN; Gimelbrant AA; Senin II; Philippov PP
    FEBS Lett; 1994 Aug; 349(2):187-90. PubMed ID: 8050563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent activation and deactivation of rod outer segment phosphodiesterase is calmodulin-independent.
    Del Priore LV; Lewis A
    Biochem Biophys Res Commun; 1983 May; 113(1):317-24. PubMed ID: 6305354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments.
    Zimmerman AL; Yamanaka G; Eckstein F; Baylor DA; Stryer L
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8813-7. PubMed ID: 2417228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between calcium and activated cGMP phosphodiesterase from retinal rod outer segments.
    Cook NJ; Nullans G; Virmaux N
    Biochim Biophys Acta; 1986 Aug; 883(1):63-8. PubMed ID: 3015235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphodiesterase of cone photoreceptors from the lizard, Anolis carolinensis.
    Booth DP; Hurwitz RL; Lolley RN
    J Neurochem; 1991 Jun; 56(6):1949-56. PubMed ID: 1851207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological evidence that light-mediated decrease in cyclic GMP is an intermediary process in retinal rod transduction.
    Miller WH
    J Gen Physiol; 1982 Jul; 80(1):103-23. PubMed ID: 6288836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of S-modulin, a calcium-dependent regulator on cGMP phosphodiesterase in frog rod photoreceptors.
    Kawamura S; Takamatsu K; Kitamura K
    Biochem Biophys Res Commun; 1992 Jul; 186(1):411-7. PubMed ID: 1321610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic GMP and photoreceptor function.
    Lolley RN; Lee RH
    FASEB J; 1990 Sep; 4(12):3001-8. PubMed ID: 1697545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.
    Chen CK; Woodruff ML; Fain GL
    J Gen Physiol; 2015 Mar; 145(3):213-24. PubMed ID: 25667411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors.
    Zhang X; Feng Q; Cote RH
    Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3060-6. PubMed ID: 16123402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors.
    Körschen HG; Beyermann M; Müller F; Heck M; Vantler M; Koch KW; Kellner R; Wolfrum U; Bode C; Hofmann KP; Kaupp UB
    Nature; 1999 Aug; 400(6746):761-6. PubMed ID: 10466724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosensitivity of 8BrcGMP-induced conductance in ROS-excised patches.
    Kosolapov AV; Khalifa-Zade MCh; Kolesnikov SS
    FEBS Lett; 1992 Jul; 305(3):174-6. PubMed ID: 1284391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.