BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 8380870)

  • 21. L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone.
    Esmaeili-Mahani S; Fathi Y; Motamedi F; Hosseinpanah F; Ahmadiani A
    Horm Behav; 2008 Feb; 53(2):351-7. PubMed ID: 18177874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in catecholaminergic pathways innervating paraventricular nucleus and pituitary-adrenal axis response during morphine dependence: implication of alpha(1)- and alpha(2)-adrenoceptors.
    Laorden ML; Fuertes G; González-Cuello A; Milanés MV
    J Pharmacol Exp Ther; 2000 May; 293(2):578-84. PubMed ID: 10773031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic morphine increases the pituitary-adrenocortical response of juvenile rats to mild stress.
    Nock B; Cicero TJ; Wich M
    Pharmacol Biochem Behav; 2005 Jan; 80(1):77-85. PubMed ID: 15652383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic naloxone-induced supersensitivity affects neither tolerance to nor physical dependence on morphine at hypothalamus-pituitary-adrenocortical axis.
    Alcaraz C; Vargas ML; Milanés MV
    Neuropeptides; 1996 Feb; 30(1):29-36. PubMed ID: 8868296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opioid effects on plasma concentrations of luteinizing hormone and prolactin in the adult male rhesus monkey.
    Gilbeau PM; Almirez RG; Holaday JW; Smith CG
    J Clin Endocrinol Metab; 1985 Feb; 60(2):299-305. PubMed ID: 2981242
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of naloxone on pulsatile luteinizing hormone in experimental hyperprolactinemia.
    Lafuente A; Marco J; Moreno ML; Esquifino AI
    Vet Hum Toxicol; 1994 Dec; 36(6):529-32. PubMed ID: 7900272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The paradoxical stimulatory effect of morphine on LH secretion is dose-dependent and naloxone-reversible.
    Van Vugt DA; Baby N; Stewart M; Reid RL
    Neuroendocrinology; 1989 Jul; 50(1):109-16. PubMed ID: 2755561
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nifedipine potentiates antinociceptive effects of morphine in rats by decreasing hypothalamic pituitary adrenal axis activity.
    Esmaeili Mahani S; Vahedi S; Motamedi F; Pourshanazari A; Khaksari M; Ahmadiani A
    Pharmacol Biochem Behav; 2005 Sep; 82(1):17-23. PubMed ID: 16111739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of acute tolerance to the effects of naloxone on the hypothalamic-pituitary-luteinizing hormone axis in the male rat.
    Owens DP; Cicero TJ
    J Pharmacol Exp Ther; 1981 Jan; 216(1):135-41. PubMed ID: 7005427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endogenous opioids participate in the regulation of the hypothalamus-pituitary-luteinizing hormone axis and testosterone's negative feedback control of luteinizing hormone.
    Cicero TJ; Schainker BA; Meyer ER
    Endocrinology; 1979 May; 104(5):1286-91. PubMed ID: 374068
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diurnal alteration in opiate effects on the hypothalamo-pituitary-adrenal axis: changes in the mechanism of action.
    Kiem DT; Fekete MI; Makara GB
    Eur J Pharmacol; 1995 Jan; 272(2-3):145-50. PubMed ID: 7713158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effects of cutaneous mechanical stimulation on plasma corticosterone, luteinizing hormone (LH), and testosterone levels in anesthetized male rats].
    Tsuchiya T
    Hokkaido Igaku Zasshi; 1994 Mar; 69(2):217-35. PubMed ID: 8157248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of nitric oxide synthase inhibitors on preventing ethanol-induced suppression of the hypothalamic-pituitary-gonadal axis in the male rat.
    Shi Q; Emanuele NV; Emanuele MA
    Alcohol Clin Exp Res; 1998 Nov; 22(8):1763-70. PubMed ID: 9835292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of exogenous and endogenous opiates on the hypothalamic--pituitary--gonadal axis in the male.
    Cicero TJ
    Fed Proc; 1980 Jun; 39(8):2551-4. PubMed ID: 6247215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor-G protein coupling and Gbetagamma signaling.
    Wang HY; Friedman E; Olmstead MC; Burns LH
    Neuroscience; 2005; 135(1):247-61. PubMed ID: 16084657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of stress-related hypothalamic neuropeptide gene expression during morphine withdrawal.
    Nunez C; Földes A; Laorden ML; Milanes MV; Kovács KJ
    J Neurochem; 2007 May; 101(4):1060-71. PubMed ID: 17286593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term dysregulation of circadian and 17-beta estradiol-induced LH, prolactin and corticosterone secretion after dimethylbenz (a) anthracene administration in the Sprague-Dawley female rat.
    Yon de Jonage-Canonico MB; Lenoir V; Scholler R; Kerdelhué B
    Breast Cancer Res Treat; 2005 Jul; 92(1):47-50. PubMed ID: 15980990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does ethanol inhibit LH secretion in the rat?
    Ellingboe J; Shaw DG; Skupny AS; Sikorski MA
    Alcohol Alcohol Suppl; 1987; 1():539-43. PubMed ID: 3426730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the duration of action of nalmefene and naloxone on the hypothalamic-pituitary axis of the rhesus monkey.
    VanVugt DA; Webb MY; Reid RL
    Neuroendocrinology; 1989 Mar; 49(3):275-80. PubMed ID: 2716954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The kappa-opioid receptor agonist MR-2034 stimulates the rat hypothalamic-pituitary-adrenal axis: studies in vivo and in vitro.
    Calogero AE; Scaccianoce S; Burrello N; Nicolai R; Muscolo LA; Kling MA; Angelucci L; D'Agata R
    J Neuroendocrinol; 1996 Aug; 8(8):579-85. PubMed ID: 8866244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.