BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8380874)

  • 1. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain.
    Hall ED; Andrus PK; Althaus JS; VonVoigtlander PF
    J Neurosci Res; 1993 Jan; 34(1):107-12. PubMed ID: 8380874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hydroxyl radical generation and post-ischemic reperfusion brain damage implications for neuroprotection].
    Kanazawa A; Kondo T
    No To Shinkei; 1996 Jun; 48(6):567-72. PubMed ID: 8703560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis.
    Christensen T; Bruhn T; Balchen T; Diemer NH
    Neurobiol Dis; 1994 Dec; 1(3):131-8. PubMed ID: 9173992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats.
    Morimoto T; Globus MY; Busto R; Martinez E; Ginsberg MD
    J Cereb Blood Flow Metab; 1996 Jan; 16(1):92-9. PubMed ID: 8530561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [HPLC--detection of hydroxyl radicals in striatum extracellular fluid in rats subjected to reperfusion after cerebral ischemia and the action of vitamin E].
    Hu D; Feng YP
    Yao Xue Xue Bao; 1993; 28(5):337-41. PubMed ID: 8237377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin decreases production of hydroxyl radical during cerebral ischemia-reperfusion.
    Li XJ; Zhang LM; Gu J; Zhang AZ; Sun FY
    Zhongguo Yao Li Xue Bao; 1997 Sep; 18(5):394-6. PubMed ID: 10322924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal ischemia: reperfusion-mediated increase in hydroxyl free radical formation as reported by salicylate hydroxylation.
    Rose S; Floyd RA; Eneff K; Bühren V; Massion W
    Shock; 1994 Jun; 1(6):452-6. PubMed ID: 7735975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of batroxobin on cerebral ischemia-reperfusion injury in gerbils.
    Chen Q; Zeng YM; Xu PC; Fan JW
    Acta Pharmacol Sin; 2000 Feb; 21(2):161-4. PubMed ID: 11263264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenytoin-initiated hydroxyl radical formation: characterization by enhanced salicylate hydroxylation.
    Kim PM; Wells PG
    Mol Pharmacol; 1996 Jan; 49(1):172-81. PubMed ID: 8569704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyl radical generation in the cat retina during reperfusion following ischemia.
    Ophir A; Berenshtein E; Kitrossky N; Berman ER; Photiou S; Rothman Z; Chevion M
    Exp Eye Res; 1993 Sep; 57(3):351-7. PubMed ID: 8224022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations of amino acid levels from striatum, hippocampus, and cerebral cortex induced by global cerebral ischemia in gerbil.
    Tang XC; Rao MR; Hu G; Wang H
    Acta Pharmacol Sin; 2000 Sep; 21(9):819-23. PubMed ID: 11501164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F).
    Althaus JS; Andrus PK; Williams CM; VonVoigtlander PF; Cazers AR; Hall ED
    Mol Chem Neuropathol; 1993 Oct; 20(2):147-62. PubMed ID: 8297419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical production during early reperfusion after different periods of ischemia in rat hearts and its effect on myocardial function. .OH in postischemic heart.
    Takemura G; Onodera T; Ashraf M
    Am J Cardiovasc Pathol; 1992; 4(2):165-74. PubMed ID: 1326289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective brain hypothermia protects against hypoxic-ischemic injury in newborn rats by reducing hydroxyl radical production.
    Hashimoto T; Yonetani M; Nakamura H
    Kobe J Med Sci; 2003; 49(3-4):83-91. PubMed ID: 14970751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance liquid chromatography-electrochemical determination of salicylate hydroxylation products as an in vivo marker of oxidative stress.
    Coudray C; Talla M; Martin S; Fatôme M; Favier A
    Anal Biochem; 1995 May; 227(1):101-11. PubMed ID: 7668368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid peroxidation and phospholipid composition in rat brain regions after ischemia and in early perfusion periods.
    Lukácová N; Gottlieb M; Marsala J
    Arch Ital Biol; 1998 Jul; 136(3):167-80. PubMed ID: 9645307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia.
    Ste-Marie L; Vachon P; Vachon L; Bémeur C; Guertin MC; Montgomery J
    Can J Neurol Sci; 2000 May; 27(2):152-9. PubMed ID: 10830350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effect of chronic ethyl docosahexaenoate administration on brain injury in ischemic gerbils.
    Cao DH; Xu JF; Xue RH; Zheng WF; Liu ZL
    Pharmacol Biochem Behav; 2004 Dec; 79(4):651-9. PubMed ID: 15582673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain hydroxyl radical generation in acute experimental head injury.
    Hall ED; Andrus PK; Yonkers PA
    J Neurochem; 1993 Feb; 60(2):588-94. PubMed ID: 8380437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate accumulation and increased hydroxyl free radical formation in the abdominal aorta and heart of gerbil after ischemia/reperfusion insult.
    Delbarre B; Floyd RA; Delbarre G; Calinon F
    Free Radic Biol Med; 1992; 13(1):31-4. PubMed ID: 1352762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.