These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 8381024)
1. Electrochemically induced conformational changes in cytochrome c monitored by Fourier transform infrared difference spectroscopy: influence of temperature, pH, and electrode surfaces. Schlereth DD; Mäntele W Biochemistry; 1993 Feb; 32(4):1118-26. PubMed ID: 8381024 [TBL] [Abstract][Full Text] [Related]
2. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3. Schlereth DD; Fernández VM; Mäntele W Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427 [TBL] [Abstract][Full Text] [Related]
3. Redox-induced conformational changes in myoglobin and hemoglobin: electrochemistry and ultraviolet-visible and Fourier transform infrared difference spectroscopy at surface-modified gold electrodes in an ultra-thin-layer spectroelectrochemical cell. Schlereth DD; Mäntele W Biochemistry; 1992 Aug; 31(33):7494-502. PubMed ID: 1510936 [TBL] [Abstract][Full Text] [Related]
4. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy. Hagarman A; Duitch L; Schweitzer-Stenner R Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508 [TBL] [Abstract][Full Text] [Related]
5. Redox-induced conformational changes in plastocyanin: an infrared study. Taneva SG; Kaiser U; Donchev AA; Dimitrov MI; Mäntele W; Muga A Biochemistry; 1999 Jul; 38(30):9640-7. PubMed ID: 10423242 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the redox reaction of an archaebacterial copper protein, halocyanin, by electrochemistry and FTIR difference spectroscopy. Brischwein M; Scharf B; Engelhard M; Mäntele W Biochemistry; 1993 Dec; 32(49):13710-7. PubMed ID: 8257705 [TBL] [Abstract][Full Text] [Related]
7. Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FTIR spectroscopy. Hellwig P; Behr J; Ostermeier C; Richter OM; Pfitzner U; Odenwald A; Ludwig B; Michel H; Mäntele W Biochemistry; 1998 May; 37(20):7390-9. PubMed ID: 9585553 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of the alkaline transition of cytochrome c. Battistuzzi G; Borsari M; Loschi L; Martinelli A; Sola M Biochemistry; 1999 Jun; 38(25):7900-7. PubMed ID: 10387031 [TBL] [Abstract][Full Text] [Related]
9. FTIR-monitored thermal titration reveals different mechanisms for the alkaline isomerization of tuna compared to horse and bovine cytochromes c. Filosa A; Ismail AA; English AM J Biol Inorg Chem; 1999 Dec; 4(6):717-26. PubMed ID: 10631603 [TBL] [Abstract][Full Text] [Related]
10. Carboxyl group protonation upon reduction of the Paracoccus denitrificans cytochrome c oxidase: direct evidence by FTIR spectroscopy. Hellwig P; Rost B; Kaiser U; Ostermeier C; Michel H; Mäntele W FEBS Lett; 1996 Apr; 385(1-2):53-7. PubMed ID: 8641466 [TBL] [Abstract][Full Text] [Related]
11. Molecular changes following oxidoreduction of cytochrome b559 characterized by Fourier transform infrared difference spectroscopy and electron paramagnetic resonance: photooxidation in photosystem II and electrochemistry of isolated cytochrome b559 and iron protoporphyrin IX-bisimidazole model compounds. Berthomieu C; Boussac A; Mäntele W; Breton J; Nabedryk E Biochemistry; 1992 Nov; 31(46):11460-71. PubMed ID: 1332761 [TBL] [Abstract][Full Text] [Related]
12. Redox-dependent changes in beta-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Dong AC; Huang P; Caughey WS Biochemistry; 1992 Jan; 31(1):182-9. PubMed ID: 1310028 [TBL] [Abstract][Full Text] [Related]
13. Intermediate and stable redox states of cytochrome c studied by low temperature resonance Raman spectroscopy. Cartling B Biophys J; 1983 Aug; 43(2):191-205. PubMed ID: 6311300 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical and spectroscopic investigations of the cytochrome bc1 complex from Rhodobacter capsulatus. Baymann F; Robertson DE; Dutton PL; Mäntele W Biochemistry; 1999 Oct; 38(40):13188-99. PubMed ID: 10529191 [TBL] [Abstract][Full Text] [Related]
15. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
16. Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Evaluation of the technique with cytochrome c. Moss D; Nabedryk E; Breton J; Mäntele W Eur J Biochem; 1990 Feb; 187(3):565-72. PubMed ID: 2154376 [TBL] [Abstract][Full Text] [Related]
17. Vibrational modes of ubiquinone in cytochrome bo(3) from Escherichia coli identified by Fourier transform infrared difference spectroscopy and specific (13)C labeling. Hellwig P; Mogi T; Tomson FL; Gennis RB; Iwata J; Miyoshi H; Mäntele W Biochemistry; 1999 Nov; 38(44):14683-9. PubMed ID: 10545194 [TBL] [Abstract][Full Text] [Related]
18. Polyanion binding to cytochrome c probed by resonance Raman spectroscopy. Hildebrandt P Biochim Biophys Acta; 1990 Sep; 1040(2):175-86. PubMed ID: 2169306 [TBL] [Abstract][Full Text] [Related]
19. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c. Battistuzzi G; Borsari M; Sola M; Francia F Biochemistry; 1997 Dec; 36(51):16247-58. PubMed ID: 9405059 [TBL] [Abstract][Full Text] [Related]
20. Direct observation of redox-linked histidine protonation changes in the iron-sulfur protein of the cytochrome bc1 complex by ATR-FTIR spectroscopy. Iwaki M; Yakovlev G; Hirst J; Osyczka A; Dutton PL; Marshall D; Rich PR Biochemistry; 2005 Mar; 44(11):4230-7. PubMed ID: 15766251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]