These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8381681)

  • 1. Cell shape-dependent rectification of surface receptor transport in a sinusoidal electric field.
    Lee RC; Gowrishankar TR; Basch RM; Patel PK; Golan DE
    Biophys J; 1993 Jan; 64(1):44-57. PubMed ID: 8381681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields.
    Xie TD; Tsong TY
    Biophys J; 1990 Oct; 58(4):897-903. PubMed ID: 2248994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of time-dependent electric fields on membrane transport.
    Astumian RD
    Biophys J; 1993 Jan; 64(1):7-8. PubMed ID: 8431550
    [No Abstract]   [Full Text] [Related]  

  • 4. [Mechanism of the effect of weak electromagnetic fields on the living body].
    Sidorenko VM
    Biofizika; 2001; 46(3):500-4. PubMed ID: 11449551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane calcium influx induced by ac electric fields.
    Cho MR; Thatte HS; Silvia MT; Golan DE
    FASEB J; 1999 Apr; 13(6):677-83. PubMed ID: 10094928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrorheological model of the cell. 5. Electrodestruction of cellular membrane in alternating electric field.
    Pawłowski P; Szutowicz I; Marszałek P; Fikus M
    Biophys J; 1993 Jul; 65(1):541-9. PubMed ID: 8369458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced redistribution of cell surface receptors by alternating current electric fields.
    Cho MR; Thatte HS; Lee RC; Golan DE
    FASEB J; 1994 Jul; 8(10):771-6. PubMed ID: 8050677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schwan equation and transmembrane potential induced by alternating electric field.
    Marszalek P; Liu DS; Tsong TY
    Biophys J; 1990 Oct; 58(4):1053-8. PubMed ID: 2248989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-order model of membrane electric field induced by alternating external electric fields.
    Kotnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of anisotropic compartments on magnetic field and electric potential distributions generated by artificial current dipoles inside a torso phantom.
    Liehr M; Haueisen J
    Phys Med Biol; 2008 Jan; 53(1):245-54. PubMed ID: 18182700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of a confined spherical cell in uniform and heterogeneous applied electric fields.
    Gowrishankar TR; Stewart DA; Weaver JC
    Bioelectrochemistry; 2006 May; 68(2):181-90. PubMed ID: 16230052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-receptor interaction rates in the presence of convective mass transport.
    Model MA; Omann GM
    Biophys J; 1995 Nov; 69(5):1712-20. PubMed ID: 8580315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics.
    Goldstein B; Dembo M
    Biophys J; 1995 Apr; 68(4):1222-30. PubMed ID: 7787014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How many states can the motor molecule, prestin, assume in an electric field?
    Scherer MP; Gummer AW
    Biophys J; 2005 May; 88(5):L27-9. PubMed ID: 15764650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of cellular membrane in alternating electric field.
    Pawłowski P; Fikus M
    Biophys J; 1993 Jul; 65(1):535-40. PubMed ID: 8369457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoresis and diffusion in the plane of the cell membrane.
    Poo M; Lam JW; Orida N; Chao AW
    Biophys J; 1979 Apr; 26(1):1-21. PubMed ID: 262406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling assemblies of biological cells exposed to electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1259-71. PubMed ID: 9775540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary-element calculations for amplification of effects of low-frequency electric fields in a doublet-shaped biological cell.
    Sekine K; Takeda T; Nagaomo K; Matsushima E
    Bioelectrochemistry; 2010 Feb; 77(2):106-13. PubMed ID: 19683969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.
    Zou Y; Wang C; Peng R; Wang L; Hu X
    Bioelectrochemistry; 2015 Apr; 102():64-72. PubMed ID: 25528063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.