These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 8382113)
41. Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Fee JA Mol Microbiol; 1991 Nov; 5(11):2599-610. PubMed ID: 1779751 [TBL] [Abstract][Full Text] [Related]
42. The sodA gene of Haemophilus ducreyi encodes a hydrogen peroxide-inhibitable superoxide dismutase. San Mateo LR; Toffer KL; Kawula TH Gene; 1998 Jan; 207(2):251-7. PubMed ID: 9511768 [TBL] [Abstract][Full Text] [Related]
43. Roles of the Two-MnSOD System of Jair HW; Lu HF; Huang YW; Pan SY; Lin IL; Huang HH; Yang TC Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974814 [TBL] [Abstract][Full Text] [Related]
44. Oxidative stress induced by a dihydropyrazine derivative. Takechi S; Nakahara K; Adachi M; Yamaguchi T Biol Pharm Bull; 2009 Feb; 32(2):186-9. PubMed ID: 19182373 [TBL] [Abstract][Full Text] [Related]
46. Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. Gardner PR; Fridovich I J Biol Chem; 1991 Jan; 266(3):1478-83. PubMed ID: 1846355 [TBL] [Abstract][Full Text] [Related]
47. Overexpressed Superoxide Dismutase and Catalase Act Synergistically to Protect the Repair of PSII during Photoinhibition in Synechococcus elongatus PCC 7942. Sae-Tang P; Hihara Y; Yumoto I; Orikasa Y; Okuyama H; Nishiyama Y Plant Cell Physiol; 2016 Sep; 57(9):1899-907. PubMed ID: 27328698 [TBL] [Abstract][Full Text] [Related]
48. A mechanism for complementation of the sodA sodB defect in Escherichia coli by overproduction of the rbo gene product (desulfoferrodoxin) from Desulfoarculus baarsii. Liochev SI; Fridovich I J Biol Chem; 1997 Oct; 272(41):25573-5. PubMed ID: 9325275 [TBL] [Abstract][Full Text] [Related]
49. Transcriptional regulation by iron of genes encoding iron- and manganese-superoxide dismutases from Pseudomonas putida. Kim YC; Miller CD; Anderson AJ Gene; 1999 Oct; 239(1):129-35. PubMed ID: 10571042 [TBL] [Abstract][Full Text] [Related]
51. Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937. Santos R; Franza T; Laporte ML; Sauvage C; Touati D; Expert D Mol Plant Microbe Interact; 2001 Jun; 14(6):758-67. PubMed ID: 11386371 [TBL] [Abstract][Full Text] [Related]
52. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Zhu C; Chen J; Wang Y; Wang L; Guo X; Chen N; Zheng P; Sun J; Ma Y Biotechnol Bioeng; 2019 Aug; 116(8):2018-2028. PubMed ID: 30934113 [TBL] [Abstract][Full Text] [Related]
53. Regulatory roles of Fnr, Fur, and Arc in expression of manganese-containing superoxide dismutase in Escherichia coli. Hassan HM; Sun HC Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3217-21. PubMed ID: 1565612 [TBL] [Abstract][Full Text] [Related]
54. Superoxide and the production of oxidative DNA damage. Keyer K; Gort AS; Imlay JA J Bacteriol; 1995 Dec; 177(23):6782-90. PubMed ID: 7592468 [TBL] [Abstract][Full Text] [Related]
55. [Mutants of cyanobacterium Synechocystis sp. PCC6803 with insertion of the sodB gene encoding Fe-superoxide dismutase]. Nefedova LN; Mel'nik VA; Babykin MM Genetika; 2003 Apr; 39(4):478-82. PubMed ID: 12760246 [TBL] [Abstract][Full Text] [Related]
56. Disrupting ROS-protection mechanism allows hydrogen peroxide to accumulate and oxidize Sb(III) to Sb(V) in Pseudomonas stutzeri TS44. Wang D; Zhu F; Wang Q; Rensing C; Yu P; Gong J; Wang G BMC Microbiol; 2016 Nov; 16(1):279. PubMed ID: 27884113 [TBL] [Abstract][Full Text] [Related]
57. The role of antioxidant enzymes in response of Escherichia coli to osmotic upshift. Smirnova GV; Muzyka NG; Oktyabrsky ON FEMS Microbiol Lett; 2000 May; 186(2):209-13. PubMed ID: 10802173 [TBL] [Abstract][Full Text] [Related]
58. Identification and characterization of a second superoxide dismutase gene (sodM) from Staphylococcus aureus. Valderas MW; Hart ME J Bacteriol; 2001 Jun; 183(11):3399-407. PubMed ID: 11344148 [TBL] [Abstract][Full Text] [Related]
59. The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Geslin C; Llanos J; Prieur D; Jeanthon C Res Microbiol; 2001 Dec; 152(10):901-5. PubMed ID: 11766965 [TBL] [Abstract][Full Text] [Related]
60. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli. Baez A; Shiloach J Antonie Van Leeuwenhoek; 2017 Jan; 110(1):115-124. PubMed ID: 27757702 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]