BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8382150)

  • 1. Bioactivation of bis[p-nitrophenyl]phosphate by phosphoesterases of the earthworm, Lumbricus terrestris.
    Park SC; Smith TJ; Bisesi MS
    Drug Chem Toxicol; 1993; 16(1):111-6. PubMed ID: 8382150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of phosphodiesterase activity in the presence of phosphomonoesterase using bis-p-nitrophenyl phosphate.
    Dolapchiev LB; Vassileva RA; Dimitrov D
    Mol Biol Rep; 1979 Aug; 5(3):185-8. PubMed ID: 226867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic hydrolysis of bis-(4-nitrophenyl)phosphate and bis-(4-cyanophenyl)phosphate by rat tissues.
    Brandt E; Heymann E
    Biochem Pharmacol; 1978 Mar; 27(5):773-7. PubMed ID: 26349
    [No Abstract]   [Full Text] [Related]  

  • 4. Enzymology and genetic regulation of a cyclic nucleotide-binding phosphodiesterase-phosphomonoesterase from Aspergillus nidulans.
    Polya GM; Brownlee AG; Hynes MJ
    J Bacteriol; 1975 Nov; 124(2):693-703. PubMed ID: 241743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxylesterase activity in earthworm gut contents: Potential (eco)toxicological implications.
    Sanchez-Hernandez JC; Mazzia C; Capowiez Y; Rault M
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Nov; 150(4):503-11. PubMed ID: 19651239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPC phosphodiesterase and phosphomonoesterase activities of renal cortex and medulla of control, antidiuresis and diuresis rats.
    Kanfer JN; McCartney DG
    FEBS Lett; 1989 Nov; 257(2):348-50. PubMed ID: 2555219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoesterases of hemolytic streptococci.
    Taketo Y; Taketo A
    Jpn J Exp Med; 1974 Aug; 44(4):291-9. PubMed ID: 4372426
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of three reputed carboxylesterase inhibitors upon rat serum esterase activity.
    Chambers JP; Hartgraves SL; Murphy MR; Wayner MJ; Kumar N; Valdes JJ
    Neurosci Biobehav Rev; 1991; 15(1):85-8. PubMed ID: 2052204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of sulphation of phenolic substances by the carboxylesterase inhibitor bis-(p-nitrophenyl)-phosphate in the rat in vivo.
    Koster H; Schlotens E; Mulder GJ
    Biochem Pharmacol; 1979 Sep; 28(17):2685-6. PubMed ID: 518682
    [No Abstract]   [Full Text] [Related]  

  • 10. Biomarker responses and metabolism in Lumbricus terrestris exposed to drugs of environmental concern, an in vivo and in vitro approach.
    Solé M; Montemurro N; Pérez S
    Chemosphere; 2021 Aug; 277():130283. PubMed ID: 33774234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organophosphate sensitive and insensitive carboxylesterases in human skin.
    Heymann E; Hoppe W; Krüsselmann A; Tschoetschel C
    Chem Biol Interact; 1993 Jun; 87(1-3):217-26. PubMed ID: 8343978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal first-pass metabolism via carboxylesterase in rat jejunum and ileum.
    Masaki K; Hashimoto M; Imai T
    Drug Metab Dispos; 2007 Jul; 35(7):1089-95. PubMed ID: 17392394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity.
    Turner BL; Haygarth PM
    Sci Total Environ; 2005 May; 344(1-3):27-36. PubMed ID: 15907508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolongation of anesthetic action by BNPP (bis-[p-nitrophenyl] phosphate).
    Boyce JR; Wright FJ; Cervenko FW; Pietak SP; Faulkner S
    Anesthesiology; 1976 Dec; 45(6):629-34. PubMed ID: 984479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct enzymic functional groups are required for the phosphomonoesterase and phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase/phosphatase.
    Keppetipola N; Shuman S
    J Biol Chem; 2006 Jul; 281(28):19251-9. PubMed ID: 16675457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phosphatase activities in rice-planting meadow brown soil and their responses to fertilization].
    Shen J; Chen Z; Chen L
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):583-5. PubMed ID: 15943382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the carboxylesterase inhibitor bis-(p-nitrophenyl)-phosphate on elimination of hexobendine.
    Kolassa N; Tuisl E; Kraupp O
    Biochem Pharmacol; 1978; 27(18):2269-73. PubMed ID: 728178
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphodiesterases in human tissues. I. Identification and separation of enzymes active on bis(p-nitrophenyl)phosphate.
    Callahan JW; Lassila EL; Philippart M
    Biochem Med; 1974 Nov; 11(3):250-61. PubMed ID: 4372994
    [No Abstract]   [Full Text] [Related]  

  • 19. Selective hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn(2+)-cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane).
    Zulkefeli M; Suzuki A; Shiro M; Hisamatsu Y; Kimura E; Aoki S
    Inorg Chem; 2011 Oct; 50(20):10113-23. PubMed ID: 21936489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Earthworm-induced carboxylesterase activity in soil: Assessing the potential for detoxification and monitoring organophosphorus pesticides.
    Sanchez-Hernandez JC; Notario del Pino J; Domínguez J
    Ecotoxicol Environ Saf; 2015 Dec; 122():303-12. PubMed ID: 26300118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.