These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Effects of caffeine on the influx of extracellular calcium in GH4C1 pituitary cells. Karhapää L; Törnquist K J Cell Physiol; 1997 Apr; 171(1):52-60. PubMed ID: 9119892 [TBL] [Abstract][Full Text] [Related]
7. Thapsigargin increases cellular free calcium and intracellular sodium concentrations in cultured rat glomerular mesangial cells. Ishikawa S; Fujisawa G; Okada K; Saito T Biochem Biophys Res Commun; 1993 Jul; 194(1):287-93. PubMed ID: 8333842 [TBL] [Abstract][Full Text] [Related]
8. Pretreatment with 1,25-dihydroxycholecalciferol enhances thyrotropin-releasing hormone- and inositol 1,4,5-trisphosphate-induced release of sequestered Ca2+ in permeabilized GH4C1 pituitary cells. Törnquist K Endocrinology; 1992 Oct; 131(4):1677-81. PubMed ID: 1396313 [TBL] [Abstract][Full Text] [Related]
9. Caffeine inhibits the binding of thyrotropin-releasing hormone in GH4C1 pituitary cells. Karhapää L; Törnquist K Biochem Biophys Res Commun; 1995 May; 210(3):726-32. PubMed ID: 7539257 [TBL] [Abstract][Full Text] [Related]
10. Ceramide 1-phosphate enhances calcium entry through voltage-operated calcium channels by a protein kinase C-dependent mechanism in GH4C1 rat pituitary cells. Törnquist K; Blom T; Shariatmadari R; Pasternack M Biochem J; 2004 Jun; 380(Pt 3):661-8. PubMed ID: 15018614 [TBL] [Abstract][Full Text] [Related]
11. Thapsigargin, but not caffeine, blocks the ability of thyrotropin-releasing hormone to release Ca2+ from an intracellular store in GH4C1 pituitary cells. Law GJ; Pachter JA; Thastrup O; Hanley MR; Dannies PS Biochem J; 1990 Apr; 267(2):359-64. PubMed ID: 1692207 [TBL] [Abstract][Full Text] [Related]
12. Heat-induced changes in intracellular sodium and membrane potential: lack of a role in cell killing and thermotolerance. Amorino GP; Fox MH Radiat Res; 1996 Sep; 146(3):283-92. PubMed ID: 8752306 [TBL] [Abstract][Full Text] [Related]
13. Functional coupling between sarcoplasmic reticulum and Na/Ca exchange in single myocytes of guinea-pig and rat heart. Janiak R; Lewartowski B; Langer GA J Mol Cell Cardiol; 1996 Feb; 28(2):253-64. PubMed ID: 8729058 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of low Na+-induced increase in intracellular calcium in KCl-depolarized rat cardiomyocytes. Rathi SS; Saini HK; Xu YJ; Dhalla NS Mol Cell Biochem; 2004 Aug; 263(1-2):151-62. PubMed ID: 15524176 [TBL] [Abstract][Full Text] [Related]
15. BAY 41-2272, a potent activator of soluble guanylyl cyclase, stimulates calcium elevation and calcium-activated potassium current in pituitary GH cells. Liu YC; Wu SN Clin Exp Pharmacol Physiol; 2005 Dec; 32(12):1078-87. PubMed ID: 16445574 [TBL] [Abstract][Full Text] [Related]
16. Regulation of changes in cytosolic Ca2+ and Na+ concentrations in rat submandibular gland acini exposed to carbachol and ATP. Hurley TW; Ryan MP; Moore WC J Cell Physiol; 1996 Aug; 168(2):229-38. PubMed ID: 8707858 [TBL] [Abstract][Full Text] [Related]
17. Small changes of cytosolic sodium in rat ventricular myocytes measured with SBFI in emission ratio mode. Baartscheer A; Schumacher CA; Fiolet JW J Mol Cell Cardiol; 1997 Dec; 29(12):3375-83. PubMed ID: 9441843 [TBL] [Abstract][Full Text] [Related]
18. Calcium fluxes in rat thyroid FRTL-5 cells. Evidence for a functional Na+/Ca2+ exchange mechanism. Törnquist K Acta Physiol Scand; 1992 Mar; 144(3):341-8. PubMed ID: 1585817 [TBL] [Abstract][Full Text] [Related]
19. Sources of axonal calcium loading during in vitro ischemia of rat dorsal roots. Petrescu N; Micu I; Malek S; Ouardouz M; Stys PK Muscle Nerve; 2007 Apr; 35(4):451-7. PubMed ID: 17206661 [TBL] [Abstract][Full Text] [Related]
20. Evidence for TRH-induced influx of extracellular Ca2+ in pituitary GH4C1 cells. Törnquist K Biochem Biophys Res Commun; 1991 Oct; 180(2):860-6. PubMed ID: 1953756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]