BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8382373)

  • 1. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants.
    Shin YK; Levinthal C; Levinthal F; Hubbell WL
    Science; 1993 Feb; 259(5097):960-3. PubMed ID: 8382373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure in the channel forming domain of colicin E1 bound to membranes: the 402-424 sequence.
    Salwiński L; Hubbell WL
    Protein Sci; 1999 Mar; 8(3):562-72. PubMed ID: 10091659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling.
    Pulagam LP; Steinhoff HJ
    J Mol Biol; 2013 May; 425(10):1782-94. PubMed ID: 23399545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR.
    Böhme S; Padmavathi PV; Holterhues J; Ouchni F; Klare JP; Steinhoff HJ
    Phys Chem Chem Phys; 2009 Aug; 11(31):6770-7. PubMed ID: 19639151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude.
    Zakharov SD; Heymann JB; Zhang YL; Cramer WA
    Biophys J; 1996 Jun; 70(6):2774-83. PubMed ID: 8744315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific biotinylation of colicin Ia. A probe for protein conformation in the membrane.
    Qiu XQ; Jakes KS; Finkelstein A; Slatin SL
    J Biol Chem; 1994 Mar; 269(10):7483-8. PubMed ID: 8125966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation.
    Todd AP; Cong J; Levinthal F; Levinthal C; Hubbell WL
    Proteins; 1989; 6(3):294-305. PubMed ID: 2560193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence energy transfer distance measurements using site-directed single cysteine mutants. The membrane insertion of colicin A.
    Lakey JH; Baty D; Pattus F
    J Mol Biol; 1991 Apr; 218(3):639-53. PubMed ID: 2016750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR.
    Yao XL; Hong M
    Biochemistry; 2006 Jan; 45(1):289-95. PubMed ID: 16388605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering.
    Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D
    J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single tryptic fragment of colicin E1 can form an ion channel: stoichiometry confirms kinetics.
    Levinthal F; Todd AP; Hubbell WL; Levinthal C
    Proteins; 1991; 11(4):254-62. PubMed ID: 1722045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The C-terminal half of the colicin A pore-forming domain is active in vivo and in vitro.
    Nardi A; Slatin SL; Baty D; Duché D
    J Mol Biol; 2001 Apr; 307(5):1293-303. PubMed ID: 11292342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane topology of the colicin A pore-forming domain analyzed by disulfide bond engineering.
    Duché D; Izard J; González-Mañas JM; Parker MW; Crest M; Chartier M; Baty D
    J Biol Chem; 1996 Jun; 271(26):15401-6. PubMed ID: 8663026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468.
    Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ
    J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.