These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8382791)

  • 61. Strategy for detecting cellular transcripts promoted by human endogenous long terminal repeats: identification of a novel gene (CDC4L) with homology to yeast CDC4.
    Feuchter AE; Freeman JD; Mager DL
    Genomics; 1992 Aug; 13(4):1237-46. PubMed ID: 1505956
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Complete foldback transposable elements encode a novel protein found in Drosophila melanogaster.
    Templeton NS; Potter SS
    EMBO J; 1989 Jun; 8(6):1887-94. PubMed ID: 2548860
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rolling-circle transposons in eukaryotes.
    Kapitonov VV; Jurka J
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8714-9. PubMed ID: 11447285
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure, evolution and properties of a novel repetitive DNA family in Caenorhabditis elegans.
    La Volpe A; Ciaramella M; Bazzicalupo P
    Nucleic Acids Res; 1988 Sep; 16(17):8213-31. PubMed ID: 3419918
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans.
    Mori I; Moerman DG; Waterston RH
    Genetics; 1988 Oct; 120(2):397-407. PubMed ID: 2848746
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genomic organization of the fungus Phycomyces.
    Avalos J; Corrochano LM; Brenner S
    Gene; 1996 Sep; 174(1):43-50. PubMed ID: 8863727
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Somatic excision of transposable element Tc1 from the Bristol genome of Caenorhabditis elegans.
    Harris LJ; Rose AM
    Mol Cell Biol; 1986 May; 6(5):1782-6. PubMed ID: 3023903
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly structured sequence homology between an insertion element and the gene in which it resides.
    Rhodes PR; Vodkin LO
    Proc Natl Acad Sci U S A; 1985 Jan; 82(2):493-7. PubMed ID: 16593538
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and models.
    LaRocca TJ; Cavalier AN; Wahl D
    Aging Cell; 2020 Jul; 19(7):e13167. PubMed ID: 32500641
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transposon-mediated genic rearrangements underlie variation in small RNA pathways.
    Zhang G; Félix MA; Andersen EC
    Sci Adv; 2024 Sep; 10(38):eado9461. PubMed ID: 39303031
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A tudor domain protein, SIMR-1, promotes siRNA production at piRNA-targeted mRNAs in
    Manage KI; Rogers AK; Wallis DC; Uebel CJ; Anderson DC; Nguyen DAH; Arca K; Brown KC; Cordeiro Rodrigues RJ; de Albuquerque BF; Ketting RF; Montgomery TA; Phillips CM
    Elife; 2020 Apr; 9():. PubMed ID: 32338603
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Continuous exchange of sequence information between dispersed Tc1 transposons in the Caenorhabditis elegans genome.
    Fischer SE; Wienholds E; Plasterk RH
    Genetics; 2003 May; 164(1):127-34. PubMed ID: 12750326
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans.
    Duret L; Marais G; Biémont C
    Genetics; 2000 Dec; 156(4):1661-9. PubMed ID: 11102365
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The allele-specific suppressor sup-39 alters use of cryptic splice sites in Caenorhabditis elegans.
    Roller AB; Hoffman DC; Zahler AM
    Genetics; 2000 Mar; 154(3):1169-79. PubMed ID: 10757761
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A transposon-based strategy for sequencing repetitive DNA in eukaryotic genomes.
    Devine SE; Chissoe SL; Eby Y; Wilson RK; Boeke JD
    Genome Res; 1997 May; 7(5):551-63. PubMed ID: 9149950
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Members of the pogo superfamily of DNA-mediated transposons in the human genome.
    Robertson HM
    Mol Gen Genet; 1996 Oct; 252(6):761-6. PubMed ID: 8917322
    [TBL] [Abstract][Full Text] [Related]  

  • 77. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation.
    Iwasaki K; McCarter J; Francis R; Schedl T
    J Cell Biol; 1996 Aug; 134(3):699-714. PubMed ID: 8707849
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Tiggers and DNA transposon fossils in the human genome.
    Smit AF; Riggs AD
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1443-8. PubMed ID: 8643651
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs.
    Rushforth AM; Anderson P
    Mol Cell Biol; 1996 Jan; 16(1):422-9. PubMed ID: 8524324
    [TBL] [Abstract][Full Text] [Related]  

  • 80. AU-rich intronic elements affect pre-mRNA 5' splice site selection in Drosophila melanogaster.
    McCullough AJ; Schuler MA
    Mol Cell Biol; 1993 Dec; 13(12):7689-97. PubMed ID: 8246985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.