These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
922 related articles for article (PubMed ID: 8382902)
1. Xanthine oxidase- and iron-dependent lipid peroxidation. Miller DM; Grover TA; Nayini N; Aust SD Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of xanthine oxidase- and Fe(3+)-ADP-dependent lipid peroxidation in negatively charged phospholipid vesicles. Fukuzawa K; Soumi K; Iemura M; Goto S; Tokumura A Arch Biochem Biophys; 1995 Jan; 316(1):83-91. PubMed ID: 7840682 [TBL] [Abstract][Full Text] [Related]
3. Superoxide-dependent reduction of some simple low molecular mass iron complexes. Gutteridge JM J Trace Elem Electrolytes Health Dis; 1991 Dec; 5(4):271-2. PubMed ID: 1668318 [TBL] [Abstract][Full Text] [Related]
4. Reactive oxygen metabolite-induced toxicity to cultured bovine endothelial cells: status of cellular iron in mediating injury. Hiraishi H; Terano A; Razandi M; Pedram A; Sugimoto T; Harada T; Ivey KJ J Cell Physiol; 1994 Jul; 160(1):132-4. PubMed ID: 8021293 [TBL] [Abstract][Full Text] [Related]
5. Superoxide dependent lipid peroxidation. Tien M; Svingen BA; Aust SD Fed Proc; 1981 Feb; 40(2):179-82. PubMed ID: 6257557 [TBL] [Abstract][Full Text] [Related]
6. Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide. Dhanasekaran A; Kotamraju S; Karunakaran C; Kalivendi SV; Thomas S; Joseph J; Kalyanaraman B Free Radic Biol Med; 2005 Sep; 39(5):567-83. PubMed ID: 16085176 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2. Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585 [TBL] [Abstract][Full Text] [Related]
8. [Interaction between dinitrosyl iron complexes and intermediate products of oxidative stress]. Shumaev KB; Gubkin AA; Gubkina SA; Gudkov LL; Sviriaeva IV; Timoshin AA; Topunov AF; Vanin AF; Ruuge EK Biofizika; 2006; 51(3):472-7. PubMed ID: 16808346 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of platelet function by superoxide anion. Handin RI; Karabin R; Boxer GJ J Clin Invest; 1977 May; 59(5):959-65. PubMed ID: 192766 [TBL] [Abstract][Full Text] [Related]
10. Singlet oxygen generation in the superoxide reaction. Mao Y; Zang L; Shi X Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419 [TBL] [Abstract][Full Text] [Related]
11. Effect of reactive oxygen metabolites on endothelial permeability: role of nitric oxide and iron. Okayama N; Grisham MB; Kevil CG; Eppihimer LA; Wink DA; Alexander JS Microcirculation; 1999 Jun; 6(2):107-16. PubMed ID: 10466113 [TBL] [Abstract][Full Text] [Related]
12. Ferritin and superoxide-dependent lipid peroxidation. Thomas CE; Morehouse LA; Aust SD J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854 [TBL] [Abstract][Full Text] [Related]
13. Production of hydroxyl radical by iron(III)-anthraquinone complexes through self-reduction and through reductive activation by the xanthine oxidase/hypoxanthine system. Malisza KL; Hasinoff BB Arch Biochem Biophys; 1995 Aug; 321(1):51-60. PubMed ID: 7639535 [TBL] [Abstract][Full Text] [Related]
14. The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase. Williams DM; Lee GR; Cartwright GE J Clin Invest; 1974 Feb; 53(2):665-7. PubMed ID: 11344583 [TBL] [Abstract][Full Text] [Related]
15. Effect of a prolonged superoxide flux on transferrin and ferritin. Paul T Arch Biochem Biophys; 2000 Oct; 382(2):253-61. PubMed ID: 11068877 [TBL] [Abstract][Full Text] [Related]
16. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate. Egan TJ; Barthakur SR; Aisen P J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036 [TBL] [Abstract][Full Text] [Related]
17. Different role of lipid peroxidation in oxidative stress-induced lethal injury in normal and tumor thymocytes. Palozza P; Agostara G; Piccioni E; Bartoli GM Arch Biochem Biophys; 1994 Jul; 312(1):88-94. PubMed ID: 8031151 [TBL] [Abstract][Full Text] [Related]
18. Xanthine oxidase, superoxide dismutase, catalase and lipid peroxidation in Mastomys natalensis: effect of Dipetalonema viteae infection. Batra S; Singh SP; Srivastava VM; Chatterjee RK Indian J Exp Biol; 1989 Dec; 27(12):1067-70. PubMed ID: 2633968 [TBL] [Abstract][Full Text] [Related]
19. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation. Miura A; Tampo Y; Yonaha M Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076 [TBL] [Abstract][Full Text] [Related]
20. Effects of citrinin on iron-redox cycle. Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]