BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8383039)

  • 1. Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis.
    Zaror I; Marcus F; Moyer DL; Tung J; Shuster JR
    Eur J Biochem; 1993 Feb; 212(1):193-9. PubMed ID: 8383039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning, expression and purification of muscle fructose-1,6-bisphosphatase from Zaocys dhumnades: the role of the N-terminal sequence in AMP activation at alkaline pH.
    Zhang FW; Zhao FK; Xu GJ
    Biol Chem; 2000 Jul; 381(7):561-6. PubMed ID: 10987362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation.
    López ML; Redruello B; Valdés E; Moreno F; Heinisch JJ; Rodicio R
    Curr Genet; 2004 Jan; 44(6):305-16. PubMed ID: 14569415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases.
    Raines CA; Lloyd JC; Willingham NM; Potts S; Dyer TA
    Eur J Biochem; 1992 May; 205(3):1053-9. PubMed ID: 1374332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake.
    Luyten K; de Koning W; Tesseur I; Ruiz MC; Ramos J; Cobbaert P; Thevelein JM; Hohmann S
    Eur J Biochem; 1993 Oct; 217(2):701-13. PubMed ID: 8223613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose repression of the Kluyveromyces lactis invertase gene KlINV1 does not require Mig1p.
    Georis I; Cassart JP; Breunig KD; Vandenhaute J
    Mol Gen Genet; 1999 Jun; 261(4-5):862-70. PubMed ID: 10394924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular genetics of phosphofructokinase in the yeast Kluyveromyces lactis.
    Heinisch J; Kirchrath L; Liesen T; Vogelsang K; Hollenberg CP
    Mol Microbiol; 1993 May; 8(3):559-70. PubMed ID: 8326866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis.
    Georis I; Krijger JJ; Breunig KD; Vandenhaute J
    Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of Substrates and Components of the Pro/N-Degron Pathway.
    Chen SJ; Melnykov A; Varshavsky A
    Biochemistry; 2020 Feb; 59(4):582-593. PubMed ID: 31895557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin A regulates genes involved in hepatic gluconeogenesis in mice: phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
    Shin DJ; McGrane MM
    J Nutr; 1997 Jul; 127(7):1274-8. PubMed ID: 9202079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity.
    Lu G; Stec B; Giroux EL; Kantrowitz ER
    Protein Sci; 1996 Nov; 5(11):2333-42. PubMed ID: 8931152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase.
    Lodi T; O'Connor D; Goffrini P; Ferrero I
    Mol Gen Genet; 1994 Sep; 244(6):622-9. PubMed ID: 7969031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the alcohol dehydrogenase (ADH) genes in yeast: characterization of a fourth ADH in Kluyveromyces lactis.
    Shain DH; Salvadore C; Denis CL
    Mol Gen Genet; 1992 Apr; 232(3):479-88. PubMed ID: 1588917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple procedure for purifying the major chloroplast fructose-1,6-bisphosphatase from spinach (Spinacia oleracea) and characterization of its stimulation by sub-femtomolar mercuric ions.
    Ashton AR
    Arch Biochem Biophys; 1998 Sep; 357(2):207-24. PubMed ID: 9735161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3.
    Stark MJ; Milner JS
    Yeast; 1989; 5(1):35-50. PubMed ID: 2538971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of the Kluyveromyces lactis homocysteine synthase gene.
    Brzywczy J; Paszewski A
    Yeast; 1999 Sep; 15(13):1403-9. PubMed ID: 10509022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics.
    Pilkis SJ; el-Maghrabi MR; Claus TH
    Diabetes Care; 1990 Jun; 13(6):582-99. PubMed ID: 2162755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases.
    Amaral FC; Van Dijck P; Nicoli JR; Thevelein JM
    Arch Microbiol; 1997 Apr; 167(4):202-8. PubMed ID: 9075620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The URA5 gene encoding orotate-phosphoribosyl transferase of the yeast Kluyveromyces lactis: cloning, sequencing and use as a selectable marker.
    Bai X; Larsen M; Meinhardt F
    Yeast; 1999 Sep; 15(13):1393-8. PubMed ID: 10509020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis.
    Goffrini P; Wésolowski-Louvel M; Ferrero I
    Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.